

CodeWarrior ®

Targeting the Java VM
Windows ® | Mac® | Solaris™

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the latest up-to-date information.

Revised: 990506 dcb

Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric, Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support cw_support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe go Metrowerks

Table of Contents
1 Introduction 7

Read the Release Notes 7
About This Manual . 8

Typographical Conventions 8
Host Conventions . 9
Figure Conventions. 9
Keyboard Conventions 10

New Features in This Release. 11
Windows . 11
Mac OS . 11
Solaris . 12

What is in This Book 13
Where to Go from Here 14
CodeWarrior Year 2000 Compliance 15

2 Getting Started 17
System Requirements 17

Windows Requirements 17
Mac OS Requirements 18
Solaris Requirements 18

Installing CodeWarrior for Java 18
Overview of Java in CodeWarrior 19
Development Tools for Java 22

CodeWarrior IDE. 22
CodeWarrior RAD Tools 23
Java Linker . 23
CodeWarrior Debugger 23
Java API Headers. 23
JavaDoc . 24

3 Programming Tutorial for Java 25
Applet Description . 26
Before You Begin . 28
Creating the Project . 29
Targeting the Java VM JAV–3

Table of Contents

Creating a New Project 29
Changing Target Settings 32

Writing the Applet . 36
Adding the Java File 37
Editing the HTML File 39

Compile and Run . 41
Compile. 42
Fix the Error . 43
Examine the Output 44
Run the Applet. 45

Debugging the Applet 45
Using the CodeWarrior Debugger 45
The Solution . 50

Exercise . 53

4 Creating Java Projects 59
Types of Java Projects 59

Applets . 59
Applications . 60
Libraries . 60

Using Project Stationery 60
Working with Java in CodeWarrior 61

Creating a New Java Project 62
Creating Java Code 64
Changing Settings 65
Running a Java Project 65
Debugging a Java Project 67
Kinds of Application Projects 67

Using the classes.zip Library 68

5 Debugging Java Projects 71
Debugger Features and Limitations 72
Special Debugger Features for Java 73

Breaking on Java Exceptions 73
Opening Multiple Class Files in One Browser 73
Choosing a Java Applet Viewer for Debugging 74
JAV–4 Targeting the Java VM

Table of Contents

Debugging Threads. 74
Viewing the Java VM Disassembly 75
Specifying Java Debugger Settings 77
Debugging External Java Sessions (Windows Only) 78
Java Settings Panel (Windows Only) 82

6 JavaDoc 85
CodeWarrior JavaDoc Implementation 85
Using JavaDoc . 86

7 Target Settings for Java 91
Target Settings . 92
Java Target. 95

Applet . 95
Application . 98
Library . 100

Java Command Line 100
Java Language . 102
FTP Post Linker . 106
Java Mac OS Post Linker. 108

JBindery . 108
Mac OS Zip . 111

Java Output . 112
Class Folder . . 112
Jar File . 113
Application . 114

JavaDoc . . 115

8 Class Wrangler for Mac OS 119
Class Wrangler Window 120
Working with Files and Archives 122

Opening a Zip Archive 123
Creating a Zip Archive 123
Adding Files. . 124
Using the Add Files Dialog 125
Add Directory . 127
Targeting the Java VM JAV–5

Table of Contents

Extracting Files . 127
Deleting Files . 128
Getting Information on Files 128
Moving Files Between Archives 129

Editing Manifest Files 130
Class Wrangler Preferences 131

Functionality Settings 132
File Filtering Settings 132
Display Settings . 134
Miscellaneous Settings 135

Comparing Archives 135

A Standalone Applets for Mac OS 137
About the JBindery Application 137
Creating a Standalone Application 137

B Troubleshooting 141
Programming Problems 141

Cannot Find Main Class in Java Application 141
Invalid Class Name in Applet Tag 142
Debugging Classes.zip 142
Additional Problems 143

Conversion Problems 144
Cannot Convert Older Droplet Projects 144

Index 145
JAV–6 Targeting the Java VM

1
Introduction
This chapter is your introduction to targeting the Java Virtual Ma-
chine (VM) with CodeWarrior. It includes the following topics:

• Read the Release Notes

• CodeWarrior Year 2000 Compliance

• About This Manual

• New Features in This Release

• What is in This Book

• Where to Go from Here

Read the Release Notes
Before using CodeWarrior Java, read the release notes. They contain
important information about any late-breaking changes.

If you are new to Java in CodeWarrior, or to CodeWarrior in gen-
eral, we strongly recommend that you read this chapter carefully.
You will get a high-level overview of Java in the CodeWarrior envi-
ronment.
Targeting the Java VM JAV–7

Introduct ion

About This Manual

About This Manual
This manual assumes you have a working knowledge of your oper-
ating system and its conventions, including how to use a mouse and
standard menus and commands, and how to open, save, and close
file. For help with any of these techniques, see the documentation
that came with your system.

The following sections describe the different conventions used in
this manual:

• Typographical Conventions

• Host Conventions

• Figure Conventions

• Keyboard Conventions

Typographical Conventions

This manual uses some style conventions to make it easier to read
and find specific information:

Notes, warnings, tips, and beginner’s hints

An advisory statement or NOTE may restate an important fact, or
call your attention to a fact which may not be obvious.

A WARNING given in the text may call attention to something
such as an operation that, if performed, could be irreversible, or flag
a possible error that may occur.

A TIP can help you become more productive with the CodeWarrior
IDE. Impress your friends with your knowledge of little-known
facts that can only be learned by actually reading the fabulous man-
ual!

A For Beginners note may help you better understand the termi-
nology or concepts if you are new to programming.
JAV–8 Targeting the Java VM

Introduct ion

About This Manual

Typeface conventions

If you see some text that appears in a different typeface (as the
word different does in this sentence), you are reading file or
folder names, source code, keyboard input, or programming items.

Text formatted like this means that the text refers to an item on the
screen, such as a menu command or control in a dialog box.

If you are using an on-line viewing application that supports hyper-
text navigation, such as Adobe Acrobat, you can click on underlined
and colored text to view another topic or related information. For
example, clicking the text “What is in This Book” in Adobe Acrobat
takes you to a section that gives you an overview of the entire
Targeting the Java VM manual.

Host Conventions

CodeWarrior runs on the host platforms and operating systems
listed below. Throughout this manual, a generic platform identifier
is used to identify the host platform, regardless of operating system.

The specific versions of the operating system that host CodeWarrior
are:

• Windows—desktop versions of the WIndows operating sys-
tem that are Win32 compliant, such as Windows 95, Win-
dows 98, or Windows NT.

• Mac OS—desktop versions of Mac OS, System 7.1 or later.

• Solaris—Solaris version 2.5.1 or later.

Figure Conventions

The visual interface of the hosts listed in “Host Conventions” is
nearly identical in all significant respects. When discussing a partic-
ular interface element such as a dialog box or window, the screen-
shot may come from any of these hosts. You should have no diffi-
culty understanding the picture, even if you are using CodeWarrior
on a different host than the one shown.
Targeting the Java VM JAV–9

Introduct ion

About This Manual

However, there are occasions when dialog boxes or windows are
unique to a particular host. For example, a particular dialog box
may appear dramatically different on a Windows host and on a
Mac OS host. In that case, a screenshot from each unique host will
appear and be clearly identified so that you can see how CodeWar-
rior works on your preferred host.

Keyboard Conventions

The default keyboard shortcuts for CodeWarrior on some platforms
are very similar. However, keyboards and shortcuts do vary across
host platforms. For example, a typical keyboard for a Windows ma-
chine has an Alt key, but that same key is called the Option key on a
typical keyboard for a Mac OS computer.

To handle these kinds of situations, CodeWarrior documentation
identifies and uses the following paired terms in the text:

• Enter/Return—the “carriage return” or “end of line” key.
This is not the numeric keypad Enter key, although in almost
all cases that works the same way.

• Backspace/Delete—the Windows Backspace key and the
Mac OS Delete key. In most cases, CodeWarrior maps these
keys the same way. This is the key that (in text editing)
causes the character before the insertion point to be erased.
(This is not the Delete/Del, the “forward delete” key.)

• Ctrl/Command—the Windows Ctrl (control) key and the
Mac OS Command key (). In most cases, CodeWarrior
maps these keys the same way.

• Alt/Option—the Windows Alt key and the Mac OS Option
key. In most cases, CodeWarrior maps these keys the same
way.

For example, you may encounter instructions such as “Press Enter/
Return to proceed,” or “Alt/Option click the Function pop-up menu
to see the functions in alphabetical order.” Use the appropriate key
as it is labeled on your keyboard.

Some combinations of key strokes require multiple modifier keys.
In those cases, key combinations are shown connected with hy-
phens. For example, if you read “Shift-Alt/Option-Enter/Return,”
JAV–10 Targeting the Java VM

Introduct ion

New Features in This Release

you would press the Shift, Alt, and Enter keys on a Windows host
and the Shift, Option, and Return keys on a Mac OS host.

Sometimes the cross-platform variation in keyboard shortcuts is
more complex. In those cases, you will see more detailed instruc-
tions on how to use a keyboard shortcut for your host platform. In
all cases the host and shortcut will be clearly identified.

Special Note for Solaris Users

The Solaris-hosted CodeWarrior IDE uses the same modifier key
names as used for Mac OS (Shift, Command, Option, and Control).
Likewise, the Key Bindings preference panel uses Mac OS symbols
to represent modifier keys. The Default CodeWarrior Key Bindings
appendix in the CodeWarrior IDE User Guide shows the default
modifier key mappings and the symbols used to represent them. On
Solaris systems, modifier keys can be mapped to any key on the
keyboard. See the Keyboard Preferences Dialog Box appendix in the
CodeWarrior IDE User Guide for the default key mappings. When
reading this manual, you will need to keep in mind these modifier
key mappings.

New Features in This Release
Following are the changes in this version of Java for CodeWarrior:

Windows
• On Windows, the Java linker requires Sun’s JDK.

• The FTP Post Linker now requires that Sun’s JDK or JRE 1.1.6
(or higher) is installed. These are found in the "Extras" folder
at the base of the CodeWarrior Windows NT/95 Tools CD.

Mac OS
• Metrowerks Java VM has been retired, and is no longer sup-

ported. Java applets and applications now use JBindery /
Apple’s MRJ VM.

• The default MRJ URL authentication dialog is used, rather
than a custom dialog.
Targeting the Java VM JAV–11

Introduct ion

New Features in This Release

• Due to problems with MRJ 2.0 on 68k, the Mac OS version of
the Java linker is PPC only.

• This version of CodeWarrior uses the new Sun Java Debug-
ger plugin as the default plugin for debugging Java on Mac
OS. For more information about this change, see “Debugger
Features and Limitations” on page 72.

Solaris
• This version of CodeWarrior adds support for Sun’s JDK 1.2

VM, as well as future versions of the JDK VM. For more in-
formation, see “Virtual Machine (Solaris)” on page 99.
JAV–12 Targeting the Java VM

Introduct ion

What is in This Book

What is in This Book
The table below gives a general description of this manual’s con-
tents.

Table 1.1 Contents of chapters

Introductory Topic Description

Introduction Contents of this manual; general de-
scription of the CodeWarrior devel-
opment tools; where to go next

Getting Started Installation and setup for Java

Programming Tutorial for
Java

Tutorial on Java programming

Creating Java Projects Creating Java programs

JavaDoc How to set up and use JavaDoc

Target Settings for Java Project settings specific to Java pro-
gramming

Debugging Java Projects Debugging Java code with the
CodeWarrior Debugger

Class Wrangler for Mac OS General purpose ZIP and JAR file
management utility for the Mac OS

Metrowerks Java for
Mac OS

Mac OS runtime interpreter for Java
bytecodes and additional utilities

Troubleshooting Troubleshooting information spe-
cific to Java

Standalone Applets for
Mac OS

Appendix describing how to create
double-clickable applets on the
Mac OS
Targeting the Java VM JAV–13

Introduct ion

Where to Go from Here
Where to Go from Here
The information in this manual is, for the most part, specific to ei-
ther the Java language or the Java virtual machine as a target. This
manual does not cover basic features of the CodeWarrior IDE, but
only Java-specific information.

You do not have to read the chapters in this manual sequentially.
Use this manual as a reference to learn about Java in CodeWarrior,
or to answer questions you encounter as you develop Java code.

You will find all the manuals mentioned in this section on the
CodeWarrior CD.

For everyone:

• See the IDE User Guide for complete information about the
CodeWarrior Integrated Development Environment and de-
bugger.

If you are new to CodeWarrior:

• Look for the CodeWarrior tutorials. You will find them on
your CodeWarrior CD.

For general information on Java programming:

This manual does not teach Java syntax, nor does it introduce you to
the classes and methods in the Java API—the calls you use to pro-
gram the Java virtual machine.

• To learn Java, you may consult the Java Language Tutorial.
This HTML document is available directly from Sun Micro-
systems at:

http://java.sun.com/doc.html

• To learn more about the Java API, consult the Java API Docu-
mentation,. This document is in HTML format and is found
on Sun Microsystems website:

http://java.sun.com/docs/

• The CodeWarrior Reference CD contains an electronic copy
of Learn Java on the Macintosh (Addison Wesley) by Barry
Boone. Learn Java on the Macintosh starts off with some object
JAV–14 Targeting the Java VM

Introduct ion
CodeWarrior Year 2000 Compliance
programming basics, then introduces you to programming in
Java. CodeWarrior also comes with some Java-related Apple
Guide files.

• Discover Programming from Metrowerks can teach you how to
program in Java. You can learn more about Discover Pro-
gramming at:

http://www.metrowerks.com/discover/

There are also many third party books on Java programming. Check
your local bookstore or favorite online bookstore for a wide selec-
tion.

CodeWarrior Year 2000 Compliance
The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system. Metrowerks directs you to
the relevant statements of Microsoft Corporation, Sun Microsys-
tems, Inc., Apple Computer, Inc., and other host or target operating
systems relating to the Year 2000 Compliance of their operating sys-
tems. Except as expressly described above, the Products, in them-
selves, do not process date data and therefore do not implicate Year
2000 Compliance issues.

For additional information, visit:

http://www.metrowerks.com/about/y2k.html.
Targeting the Java VM JAV–15

Introduct ion
CodeWarrior Year 2000 Compliance
JAV–16 Targeting the Java VM

2
Getting Started
This chapter gives you a brief overview of Java in CodeWarrior, in-
stallation, system requirements and tools available to you.

This chapter includes the following topics:

• System Requirements

• Installing CodeWarrior for Java

• Overview of Java in CodeWarrior

• Development Tools for Java

System Requirements
If you can run CodeWarrior, you can target the Java virtual ma-
chine.

Windows Requirements

The Windows-hosted version of CodeWarrior requires the follow-
ing:

• a 486DX processor or higher

• at least 32 megabytes of RAM

• approximately 90 megabytes of free hard disk space for a
minimal installation

• approximately 450 megabytes free hard disk space for a full
installation

• Microsoft Windows operating system (Windows 95, Win-
dows 98, or Windows NT 4.0 service pack 3)

• a CD-ROM drive to install the software
Targeting the Java VM JAV–17

Gett ing Started
Installing CodeWarrior for Java
Mac OS Requirements

The Mac OS-hosted version of CodeWarrior requires the following:

• a Motorola 68040 processor, or a PowerPC 601 processor or
higher

• at least 32 megabytes of RAM

• approximately 120 megabytes of free hard disk space for a
minimal installation

• approximately 400 megabytes of free hard disk space for a
full installation

• Mac OS 7.6.1 or later

• a CD-ROM drive to install the software

Solaris Requirements

The Solaris-hosted version of CodeWarrior requires the following:

• a Sun SparcStation or Sparc-based machine

• at least 64 megabytes of RAM

• approximately 80 MB of free hard disk space

• Solaris 2.5.1 or later, and X11-R5/Motif 1.2 (CDE recom-
mended)

• a CD-ROM drive to install the software

Installing CodeWarrior for Java
Use the CodeWarrior installer application to install the CodeWar-
rior IDE. Be sure to follow the instructions in the installer applica-
tion. The installer ensures that everything is installed in the proper
locations.

See the QuickStart manual for instructions on using the installer to
install CodeWarrior on your particular platform.
JAV–18 Targeting the Java VM

Gett ing Started
Overview of Java in CodeWarrior
Overview of Java in CodeWarrior
Java is both a programming language and, in a virtual sense, a com-
puter platform—a target, in CodeWarrior terminology. As such,
Java is unique among the languages and targets supported in the
CodeWarrior IDE. You can think of Java as not only a language, but
as an instruction set for the Java virtual machine.

The virtual machine, commonly called a VM, is an abstract com-
puter microprocessor. Like any silicon computer chip, the virtual
machine has an instruction set. The instructions for the Java virtual
machine are called bytecodes.

A bytecode is a stream of formatted bytes that has a precisely de-
fined impact on the virtual machine. Bytecodes tell the virtual ma-
chine to do things like push and pop values on a stack, branch, load
and store values, and so forth. Just like traditional assembly lan-
guage instructions affect a silicon-based processor, the Java byte-
codes are a real instruction set for the Java virtual machine.

The reason for the abstract nature of the virtual machine and its
bytecode instruction set is to allow you, the programmer, to create
platform-independent code. The runtime interpreter and just-in-
time compilers replicate in a real operating system the effect that a
bytecode has on the virtual machine.

What you do in the Java environment is a little different from what
you have done in the past using C, C++, or Pascal.

The development process for Java software in CodeWarrior has the
following basic steps:

1. Write source code.

In CodeWarrior, you write Java source code in exactly the same way
you do for C, C++, and Pascal. You use the same project manager
and the same source code editor. You get all the power and features
of CodeWarrior. To target the Java virtual machine, you make the
appropriate selection in the proper settings panel.
Targeting the Java VM JAV–19

Gett ing Started
Overview of Java in CodeWarrior
2. Compile the source code.

Again, this process is exactly like it is for any language and target
supported in CodeWarrior. You issue the appropriate Compile or
Make command from the CodeWarrior Project menu. In response,
the CodeWarrior Java compiler generates Java bytecodes based on
your source code. CodeWarrior saves the bytecodes in a Java class
file.

The bytecodes in the Java class file are analogous to the object code
generated by a C/C++ or Pascal compiler. The difference between
traditional object code and Java bytecodes is in how they run.

Object code can run directly on the platform for which it was com-
piled, but cannot run on any other platform. You must compile it
over and over again for each platform. There are also serious cross-
platform problems you can encounter trying to address multiple op-
erating systems and computer microprocessors.

Figure 2.1 Compiling and running object code

Java bytecodes cannot run directly on any real machine. On the
other hand, the Java bytecodes created by the CodeWarrior Java
compiler can be interpreted to run on any platform that has a byte-
code interpreter (BCI). You write the code once, compile it once, and
then you are done.
JAV–20 Targeting the Java VM

Gett ing Started
Overview of Java in CodeWarrior
Figure 2.2 Compiling and running Java bytecodes

3. Run the code.

Choose Project > Run and CodeWarrior launches the applet with
the applet viewer chosen in Target Settings. To learn how to specify
an applet viewer, see “Target Settings” on page 92. Remember, the
bytecodes in the class file cannot run directly on any real platform.
The class file must be run under the control of a bytecode interpreter
(BCI). The BCI is responsible for translating the bytecodes into ma-
chine-native instructions.

4. Debug the code with the CodeWarrior Debugger.

The final step in the development process is to test and debug your
code. You debug Java code using the same CodeWarrior debugger
you use for C/C++ and Pascal code. The CodeWarrior debugger
understands Java. The debugger does everything you would expect
the debugger to do. It has a stack crawl, displays local variables, and
allows you to set breakpoints.

To debug Java code, your applet or application must be built to in-
clude debugging information. First choose Project > Enable Debug-
ger to enable the debugger. Then click the debug column in the
project window next to the file you want to debug to tell the IDE to
include debugging information when it compiles the file. Choose
Project > Make to compile and link your code. You can also choose
Project > Debug menu. CodeWarrior compiles, links, and launches
your program under debugger control.

From here you can set break points, and run your program.

Mac OS

Windows

UNIX

BCI

BCI

BCI

Source Code Java .class
Targeting the Java VM JAV–21

Gett ing Started
Development Tools for Java
Summary

That is all there is to it. As you can see, the big difference between
Java and compiled languages is that Java code is interpreted at
runtime.

If you have used CodeWarrior in the past, developing Java code in
CodeWarrior is going to look very familiar to you. If you are new to
CodeWarrior, you will find developing Java code to be a pleasure
once you master the tools.

Development Tools for Java
These are the tools CodeWarrior provides for developing Java soft-
ware:

• CodeWarrior IDE

• CodeWarrior RAD Tools

• Java Linker

• CodeWarrior Debugger

• Java API Headers

• JavaDoc

CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) pro-
vides a complete set of tools for developing application programs
for a variety of target platforms, including 68K- and PowerPC-based
Mac OS systems, Win32/x86 systems, Solaris, and Java. You use the
same IDE when developing code for all target platforms; you desig-
nate the platform and code generator of your choice when you cre-
ate your project.

For information on the CodeWarrior IDE, see the IDE User Guide.
JAV–22 Targeting the Java VM

Gett ing Started
Development Tools for Java
CodeWarrior RAD Tools

CodeWarrior RAD tools let you visually construct an application.
The tools included with the IDE are for use with C++ and Java. They
extend the graphical capabilities of the IDE for use with RAD.

For more information on CodeWarrior RAD tools, see the IDE User
Guide.

Java Linker

Like the compilers, the Java Linker is a plug-in tool integrated into
the CodeWarrior IDE.

CodeWarrior Debugger

The CodeWarrior debugger controls your program’s execution and
allows you to see what is happening internally as your program
runs. You use the debugger to find problems in your program’s exe-
cution.

The debugger can execute your program one statement at a time,
and suspend execution when control reaches a specified point.
When the debugger stops a program, you can view the chain of
function calls, examine and change the values of variables, and in-
spect the contents of the processor’s registers.

For general information about the debugger, including all of its
common features and its visual interface, you should read the IDE
User Guide.

For more information about debugging software for Java, see “De-
bugging Java Projects” on page 71.

Java API Headers

The Java Application Programming Interface (API) is a set of data
structures and functions used to interface to the Java operating sys-
tem.
Targeting the Java VM JAV–23

Gett ing Started
Development Tools for Java
JavaDoc

JavaDoc is a batch compiler that processes Java source code files,
and uses the comments preceding classes, methods, etc. to generate
HTML based documentation for the code. See “JavaDoc” on page 85
for more information.
JAV–24 Targeting the Java VM

3
Programming
Tutorial for Java
This tutorial takes you very quickly through the CodeWarrior Java
environment. It does not teach you Java programming. It is de-
signed to teach you how to use the CodeWarrior Integrated Devel-
opment Environment (IDE) to write and debug Java code. The tuto-
rial takes you step-by-step through the entire process. The applet
you create is designed to be immediately reusable with little to no
change, depending on your needs.

NOTE: This tutorial requires a Java-enabled browser or Java ap-
plet viewer. If you do not already have a Java enabled browser in-
stalled, the latest version of Microsoft Internet Explorer is available
on the CodeWarrior CD.

The topics discussed in this tutorial are:

• Applet Description

• Before You Begin

• Creating the Project

• Writing the Applet

• Compile and Run

• Debugging the Applet

• Exercise
Targeting the Java VM JAV–25

Programming Tutor ia l for Java
Applet Description
Applet Description
The applet you will create in this tutorial is an animation with
sound, that you can add to any web page. This particular imple-
mentation shows a nifty about box animation with sound. But when
we are done with this tutorial, you will be able to use this applet for
anything you want simply by changing the parameters in the
applet HTML tag.

Theory of Operation

How the applet works is fairly simple. It loads the AboutBox.gif
image into memory. The image contains 49 sections, from top to
bottom, each containing a different slide of the animation. The ap-
plet uses an array (sequence[]) to describe the sequence in which
the slides are displayed. The image display sequence is played and
repeated indefinitely.

Each time the applet gets an update event, it calls a Paint method
that draws the appropriate slide based on the slide number con-
tained in the current element of the sequence array.

When the applet gets to the slide indicated by the soundSlide vari-
able, it plays the sound file specified in the sound parameter of the
applet HTML tag. In this tutorial, the metal_stamp.au sound file
is played.

The last four elements of the sequence array cause the last two slides
to be repeated. This coincides with the playing of the sound file. It
creates the illusion that the Metrowerks name bar is “stamped” into
place.

Figure 3.1 shows how the applet works. The first element of the se-
quence array holds the number one. The applet displays the section
of the image corresponding to slide one. The second element of the
array holds the number two. The applet displays slide two. The
third element of the array contains the number three. The applet
displays slide three. This continues until the end of the array is
reached, and the sequence is repeated.
JAV–26 Targeting the Java VM

Programming Tutor ia l for Java
Applet Description
Figure 3.1 Theory of Operation
Targeting the Java VM JAV–27

Programming Tutor ia l for Java
Before You Begin
Before You Begin
Before you begin, locate the AboutBox Tutorial folder. It is in
one of the locations outlined below. If the ImageMap Tutorial
folder is not already installed on your hard drive, copy it from the
CodeWarrior Reference CD to your hard drive now. The files you
create and modify during this tutorial are located in this folder.

AboutBox Tutorial folder locations

Windows CodeWarrior Examples\CodeWarrior Java\Java Tuto-
rial \AboutBox Tutorial\

Mac OS CodeWarrior Examples:CodeWarrior Java:Java Tuto-
rial:AboutBox Tutorial:

Solaris CodeWarrior_Examples/Java_Tutorial /
AboutBox_Tutorial/

All of the files for the completed tutorial are located in the
AboutBox Solution folder inside of the Java Tutorial folder.
You can compare your work against these files if you run into prob-
lems.

WARNING! Be careful to use the exact names specified in each
step of this tutorial. Some features of Java are very dependent on
names, and the applet may not work if names do not match ex-
actly. Java is a case-sensitive language; so make sure you match
case as well as spelling.
JAV–28 Targeting the Java VM

Programming Tutor ia l for Java
Creating the Project
Creating the Project
In this section we will show you how to create a project using the
CodeWarrior IDE, and how to set the project up to make a Java ap-
plet. The steps required to do this are as follows:

• Creating a New Project

• Changing Target Settings

Creating a New Project

We will use the CodeWarrior IDE to create a new project to use for
our tutorial.

1. Locate the CodeWarrior IDE application and launch it.

The IDE launches and awaits your command.

2. Choose File > New.

The New dialog box appears (Figure 3.2).

Figure 3.2 The New dialog box
Targeting the Java VM JAV–29

Programming Tutor ia l for Java
Creating the Project
3. Select the stationery.

Click the Java Stationery in the list so that it is highlighted.

4. Name the project.

Name the project AboutBox.mcp .

NOTE: The “.mcp” suffix is a CodeWarrior naming convention
for project files. If you use this naming convention, you will be able
to use your project files on any host that CodeWarrior runs on.

5. Click Set….

CodeWarrior displays a save file dialog.

6. Uncheck the Create Folder option.

This option is located at the bottom of the dialog box. Since we are
providing you with a tutorial folder to work with, there is no need
to create a enclosing folder for this project.

Figure 3.3 The Save Project As box
JAV–30 Targeting the Java VM

Programming Tutor ia l for Java
Creating the Project
7. Choose the location of the new project.

Navigate to the AboutBox Tutorial folder on your hard drive.
The dialog box should look like Figure 3.3. Click the Save button to
return to the New dialog box.

8. Click the OK button.

CodeWarrior displays the New Project Stationery window, listing
all of the available Java stationery types.

9. Choose Java Applet from the list of stationery types.

Click Java Applet in the list to select it. Then click OK. CodeWarrior
creates your new project.

When saving the new project, CodeWarrior creates three files in the
tutorial folder:

• AboutBox.mcp — the project file itself

• TrivialApplet.html — an HTML file

• TrivialApplet.java — a Java source code file

• AboutBox Data — the project data folder

WARNING! The project data folder contains files with informa-
tion about your project file, target settings, object code, and
browser information. Do not change the contents of this folder.

Code Warrior opens the project and displays a window similar to
that shown in Figure 3.4. We are now ready to proceed to the next
section.
Targeting the Java VM JAV–31

Programming Tutor ia l for Java
Creating the Project
Figure 3.4 The project window

Changing Target Settings

In this section, we will change the settings in the project to instruct
CodeWarrior to build a Java class folder for the applet.

About Build Targets

A project file can have multiple build targets. For example, it is com-
mon to have a debug build target and a release build target in the
same project. Each build target has its own unique collection of set-
tings that control how CodeWarrior creates the final executable.
These settings are called the build target settings. These settings can
be accessed by choosing Edit > Target Settings (where Target is the
name of the current build target displayed in the project window).
Choosing this menu item open the Target Settings window. When
the settings for a build target are changed, the change affects only
the current build target.
JAV–32 Targeting the Java VM

Programming Tutor ia l for Java
Creating the Project
NOTE: CodeWarrior also has “global” preferences that affect all
projects. For more information on preferences and build target set-
tings, see the IDE User Guide.

When you create a new project using stationery, the default build
target settings are already set. However, for most projects, you will
need to change a few of these settings in order to get the results you
want.

The steps required to make appropriate changes to the project for
this tutorial are:

1. Open the Target Settings window

Choose Edit > Java Applet Settings. CodeWarrior displays the Tar-
get Settings dialog box (Figure 3.5). Note that Java Applet is the
name of the build target in the new project. This menu item always
reflects the name of the build target currently being displayed in the
project window.

Figure 3.5 Target settings dialog box
Targeting the Java VM JAV–33

Programming Tutor ia l for Java
Creating the Project
The Target Settings window contains a list of settings panels on the
left. The right side of the dialog box shows the options for the cur-
rently selected panel.

For a more detailed description of each settings panel, see “Target
Settings for Java” on page 91.

2. Change the target name

Select Target Settings under the Target section of the list of settings
panels on the left. Change the Target Name field to “AboutBox”
(Figure 3.6). Notice how changing the name of the target changes
what is displayed in the build target display area in the project win-
dow. For more information on items in the project, see the IDE User
Guide. The Edit > Target Settings menu item also changes to reflect
the new build target name.

Figure 3.6 Target Name set to “AboutBox”

3. Change the Output Type to Class Folder

Select Java Output under the Linker section in the list of settings
panels. Change the Output Type to Class Folder as in Figure 3.7.
JAV–34 Targeting the Java VM

Programming Tutor ia l for Java
Creating the Project
Figure 3.7 Output Type set to Class Folder

NOTE: The Filename Truncation option in Figure 3.7 only ap-
plies to the Macintosh version of the CodeWarrior IDE, and will
only appear in that version of the IDE.

4. Change the Name of the Class Folder

Change the Name field to AboutBox as in Figure 3.8. These settings
instruct CodeWarrior to create a new class folder named AboutBox
in the same folder as your project. For this tutorial, we do not need
to modify any other settings in this panel.

Figure 3.8 Java Output panel
Targeting the Java VM JAV–35

Programming Tutor ia l for Java
Writing the Applet
5. Save the settings

Click the Save button at the bottom of the Target Settings dialog
box.

6. Close the Target Settings dialog box.

Click the close box on the Target Settings window now to close it.

NOTE: Depending on which options were changed, you may see
the dialog in Figure 3.9 upon closing the Target Settings dialog.
Click the Cancel button to cancel the closing of the dialog allowing
you to make more changes before continuing. Click the OK button
to close the dialog.

Figure 3.9 Relink Target caution dialog

Now that all the settings for the project have been changed,
CodeWarrior will build the type of applet we want. You are now
ready to proceed to the next section, where you will start writing the
code for the applet.

Writing the Applet
In this section, you write the actual code for the applet. Topics dis-
cussed in this section of the tutorial are:

• Adding the Java File

• Editing the HTML File
JAV–36 Targeting the Java VM

Programming Tutor ia l for Java
Writing the Applet
Adding the Java File

The code for the AboutBox applet is fairly extensive at almost 75
lines. To make things easier, the code is provided for you in the tu-
torial folder. All you need to do is add it to the project, and remove
the place-holder file that is there now.

1. Tell the IDE where to add the file

We want the AboutBox.java file to be added to the appropriate
group in the project window (in this case, the Sources group). To do
this, highlight any file in the Sources group, or highlight the group
title itself.

2. Add AboutBox.java to the project

Choose Project > Add Files. An add files file dialog will appear.
Navigate to the AboutBox Tutorial folder and add the
AboutBox.java file to the project.

3. Remove the TrivialApplet.java file

Select the TrivialApplet.java file and choose
Project > Remove Selected Items. The resulting project window
should look similar to the one in Figure 3.10.

NOTE: The TrivialApplet.java file is still in the AboutBox
Tutorial folder. You can delete it if you want. But leaving it there
will not affect your project.
Targeting the Java VM JAV–37

Programming Tutor ia l for Java
Writing the Applet
Figure 3.10 Adding Java file to the project

Java Naming Conventions

The name of the Java file is important. The name of the file should
be the same as the name of the class created in the file, and end with
the .java extension. This extension is a Java programming conven-
tion for naming source files. The Metrowerks Java compiler uses
this extension to recognize Java source files more easily.

NOTE: Actually, the Metrowerks Java compiler allows Java file-
names to be different from the classes contain in them. This fea-
ture is useful on the Mac OS, which limits file names to 32 charac-
ters, which is too short for some Java class names. However, you
should name a Java file after its class whenever possible, so your
code is compatible with all Java compilers. If you must give a file a
different name, choose a name that is as close as possible to the
name of the class defined in that file.

Now when you compile the project, CodeWarrior will use the new
code you have supplied in the AboutBox.java file. We are now
ready to advance to the next section.
JAV–38 Targeting the Java VM

Programming Tutor ia l for Java
Writing the Applet
Examining the code

Open the AboutBox.java file and look at the source code.

NOTE: Do not make any changes to the source code yet.

Reading the comments in the code will help you understand the
functionality of the applet. If you are not familiar with Java syntax,
you may not understand all the code. That is OK. The purpose of
this tutorial is not to teach you Java, but to introduce you to
CodeWarrior. For a list of recommended Java documentation, see
“Where to Go from Here” on page 14.

Editing the HTML File

CodeWarrior allows you to add files to a project which do not con-
tain source code. This allows you to keep track of all files related to
a project, even those that are not compiled.

While developing an applet, programmers normally use a small
HTML file that embeds the applet code, which is used to view it as
the applet is being developed. The project stationery for an applet
project includes a sample file, TrivialApplet.html for this pur-
pose.

When you choose Project > Run, the CodeWarrior IDE passes the
first HTML file in the Link Order view of the project window to the
applet viewer. The applet viewer uses the HTML file to pass param-
eters to the Java applet.

NOTE: For more information on either the File view or Link Order
view of the CodeWarrior project window, see the IDE User Guide.

In this section, you edit the TrivialApplet.html file so that it
contains what we need for our applet to function.
Targeting the Java VM JAV–39

Programming Tutor ia l for Java
Writing the Applet
1. Open the TrivialApplet.html file

Double-click the TrivialApplet.html file in the project window.
The CodeWarrior IDE opens a new window titled “TriviaAp-
plet.html” and displays the html.

2. Edit the HTML.

Choose Edit > Select All. CodeWarrior selects all of the HTML.
Press Delete on the keyboard to remove the HTML. Replace it with
the HTML in Listing 3.1.

Listing 3.1 New HTML for the AboutBox applet

<html>
<head><title>Java Tutorial</title></head>
<body bgcolor="#F5DE93">

<center>
<applet codebase="AboutBox" code="AboutBox.class"

width="319" height="99"
image="AboutBox.gif"
sound="metalstamp.au">

</applet>
<p>

metrowerks -
<i>Software at Work ™</i>

</p>
</center>

</body>
</html>

The applet tag in the HTML code tells the web browser that the ap-
plet code can be found in a folder named AboutBox . It also sets the
viewing size of the applet, and specifies the image file to use and the
sound file to play.

3. Save the new HTML under a different filename.

Choose File > Save As…. The editor displays a save file dialog. Re-
name the file “index.html”. Navigate to the AboutBox Tutorial
folder and click the Save button to save the file.
JAV–40 Targeting the Java VM

Programming Tutor ia l for Java
Compile and Run
The file TrivialApplet.java is still in the AboutBox Tutorial
folder. You can delete it if you want. But leaving it there will not af-
fect your project.

4. Remove the TrivialApplet.html file from the project

Select the TrivialApplet.html file in the project window, and choose
Project > Remove Selected Items to remove it from the project.

Your project window should now look similar to the one in Figure
3.11.

Figure 3.11 Project window with new HTML file

Now that all code and needed files have been included in the
project, we are ready to proceed to the next section.

Compile and Run
You are now near the final stages of your first Java applet, and this
tutorial. All that is left to do is compile and test the applet to make
sure it runs smoothly.
Targeting the Java VM JAV–41

Programming Tutor ia l for Java
Compile and Run
Compile

Choose Project > Make. CodeWarrior compiles and links your code
into the finished applet, all in one step.

CodeWarrior is very smart about picking up syntax errors at com-
pile time. Usually these errors are the result of mistyped or unused
variable names, incorrect class information, or other related errors.
The tutorial code has one deliberate error. CodeWarrior will display
it now as shown in Figure 3.12.

Figure 3.12 The Error & Warnings window

The Errors & Warnings window displays a list of errors the com-
piler found when it tried to make the project. In this case there is
only one error. The bottom part of this window displays the source
file that contains the selected error. The red arrow points to the area
JAV–42 Targeting the Java VM

Programming Tutor ia l for Java
Compile and Run
of code where the error was encountered. Sometimes the error is on
the same line, but it can also be found a line or two before depend-
ing on the type of error.

Fix the Error

The source view of Errors & Warnings window is completely edit-
able. You can edit and save your code directly from this window.
There is no need to open up the source file and try to find the error
manually. This is a great time saver if you have many errors.

In this case, the error is a missing semicolon (;) at the end of the line
pointed to by the red arrow. We will fix this line and recompile the
project.

1. Correct the problem line

Click at the end of the problem line and type a semicolon (;).

2. Save the corrected code

Then choose File > Save to save the file.

3. Compile the project again

We are done with the Errors & Warnings window now. Close it.
Then choose Project > Make to compile the project again.

Note that while CodeWarrior is building your project, the check
mark to the left of the files in the project window is erased, indicat-
ing that the files no longer need to be compiled. In the Code column,
the number of bytes of code is updated. The number is zero for the
classes.zip file because that is a shared library to which the ap-
plet links at runtime. This file contains the Java classes and methods
called from the AboutBox.java source file.

When the project is completely compiled and ready to run, the
project window should look like Figure 3.13.
Targeting the Java VM JAV–43

Programming Tutor ia l for Java
Compile and Run
Figure 3.13 Compiled java project

Examine the Output

Take a minute to examine the class folder produced by CodeWar-
rior. It is in the project folder, and is named AboutBox . It contains
three files:

AboutBox.class — the class file generated by the Make command

AboutBox.gif — the supplied image which is used by the applet

metalstamp.au — the supplied sound file used by the applet

NOTE: The applet parameters in the HTML we are using for this
tutorial look for the images in the AboutBox folder, where the class
file resides. For your convenience, we have placed the image file
and sound file inside of this folder so that after a successful com-
pile, you will be able to use the class folder without any additional
work. Normally, however, you will need to ensure that you place
any additional files such as images in the appropriate place so that
your applet will run correctly.
JAV–44 Targeting the Java VM

Programming Tutor ia l for Java
Debugging the Applet
Run the Applet

The last thing to do at this point is test whether the applet works as
expected. Choose Project > Run. CodeWarrior launches the applet
viewer chosen in the Java Target settings panel, passing it the
HTML file in your project. The applet viewer then reads the HTML
file, which tells it where to find the class file, image file, and sound
file used in the applet.

There is a bug in the applet, which we will discuss in the next sec-
tion.

Debugging the Applet
As you have probably already noticed, the applet appears to ani-
mate, and the metalstamp.au sound is played. But only part of the
applet is being displayed, as shown in Figure 3.14. The bug that is
causing this problem is probably in the method that does the draw-
ing. So we will look at that part of the file now to see if we can spot
the bad code.

Figure 3.14 Applet bug

Using the CodeWarrior Debugger

The CodeWarrior Debugger is integrated into the CodeWarrior IDE
to help you debug your code. The same debugger is used for Java,
C, C++, Pascal, and assembly language.
Targeting the Java VM JAV–45

Programming Tutor ia l for Java
Debugging the Applet
The debugger is called a “source level debugger” because it dis-
plays the source code so you can see exactly which line will be exe-
cuted next. This lets you get a clearer understanding of your code,
without the need to learn assembly language.

For more information on the debugger, see the Debugger User Guide.

1. Enable the Debugger

Before you can debug the Java code, you must first tell CodeWarrior
to use the debugger when running the applet. Choose
Project > Enable Debugger. CodeWarrior prepares the project for
debugging.

2. Turn On Debugging for the Java File

In order for CodeWarrior to debug a file, the file must be marked for
debugging in the project window. We want to mark the About-
Box.java file for debugging. To do this, click in the debug column
next to AboutBox.java .

3. Open the Java source code file

We know roughly where we can find the problem code in the Java
source code file. Open the AboutBox.java file by double-clicking
it in the project window.

4. Locate the update() method

Find the update() method. An easy way to scroll a method into
view in the CodeWarrior editor is to select the method name in the
function pop-up menu as shown in Figure 3.15.
JAV–46 Targeting the Java VM

Programming Tutor ia l for Java
Debugging the Applet
Figure 3.15 Using the function pop-up menu

5. Set a Breakpoint

To set a breakpoint, click the breakpoint column on the left-hand
side of the window, next to the line of source code you want execu-
tion to stop on. A red stop sign will appear in the column where you
click.

In this case we want to set the breakpoint on the first line of code in
the update() method:

int slideNum = sequence[slot];

Figure 3.16 shows how the editor window should look once the
breakpoint has been set.
Targeting the Java VM JAV–47

Programming Tutor ia l for Java
Debugging the Applet
Figure 3.16 Setting a Breakpoint

6. Start the Debugging Session

To start the debugging session, choose Project > Debug. CodeWar-
rior passes the HTML file to the debugger. The debugger launches
the applet viewer chosen in the Java Target settings panel. The ap-
plet viewer then loads the applet and creates a window for it to run
in. Finally, the debugger comes to the front, displaying the program
window for the applet, with the current-statement arrow at the first
line of code in the main class of applet, as shown in Figure 3.17.

The debugger allows you to examine variables, step through the
program, set breakpoints, and perform other debugger functions.
The top left pane is the Stack pane. This pane shows the order in
which each method has been executed, called a call chain. The pane
at the top right of the window is the Variables pane. It lists the vari-
ables in use by the current function, along with the current values of
those variables. The bottom pane is the Source pane. It displays the
JAV–48 Targeting the Java VM

Programming Tutor ia l for Java
Debugging the Applet
source code currently being executed. The arrow in the Source pane
is called the current statement arrow. This arrow points to the line of
code that will be executed next. See the Debugger User Guide for a
more detailed description of the debugger windows.

Figure 3.17 Starting the debug session

7. Jump to the Breakpoint

To get to the breakpoint we set earlier, we need to tell the
debugger to run the applet. Do this by pressing the Run but-
ton (shown at the left).

CodeWarrior hides the debugger window, and the applet continues
execution until the breakpoint is reached. Then the debugger win-
dow is displayed again, this time with the current-statement arrow
at the line with the breakpoint, as shown in Figure 3.18.
Targeting the Java VM JAV–49

Programming Tutor ia l for Java
Debugging the Applet
Figure 3.18 Jumping to the breakpoint

8. Step Through the code

The debugger lets you step through the source code one line
at a time. You do this by clicking the Step button (shown at
the left).

Step through the code until you get to the following line:

g.clipRect(0, 0, height, totalWidth);

The Solution

Remember that the applet seems to run correctly except that the
right side of the animation is not being displayed. If you open the
image you will see that the image is the correct size. But only part of
the image is being displayed in the applet. It is as if the right side of
the animation is being clipped out of the display.
JAV–50 Targeting the Java VM

Programming Tutor ia l for Java
Debugging the Applet
If we look up the clipRect() method in Sun’s JDK 1.1.6 API docu-
mentation, we see the following description:

public abstract void clipRect(int x,
 int y,
 int width,
 int height)

There is the problem! The order of the width and height parameters
in our code is reversed in our code! We are supplying height where
the width should go, and totalWidth where the height should go.

The image being used for this tutorial is 319 pixels wide, and 99 pix-
els high. Our clipRect() parameters are instructing the applet to
clip to only 99 pixels wide.

Now we will stop the debugger and correct the problem line in the
Java source code.

1. Stop the debugger

To stop the debugger, click the Stop button (shown at the
left). The applet viewer will terminate the applet, and will
return control to the debugger. The debugger will then close
it’s window and return control to the CodeWarrior IDE.

2. Open the Java source code file

If the AboutBox.java file was open prior to the debugging session,
the CodeWarrior IDE displays it once again. If the AboutBox.java
file is not open, open it now by double-clicking it in the project win-
dow.
Targeting the Java VM JAV–51

Programming Tutor ia l for Java
Debugging the Applet
3. Edit the source code

Edit this line:

g.clipRect(0, 0, height, totalWidth);

Change it so that it reads:

g.clipRect(0, 0, totalWidth, height);

4. Save the changes

Choose File > Save to save the correction.

5. Run the applet

Choose Project > Run to run the applet again.

The applet will now display properly as in Figure 3.19.

Figure 3.19 Applet running properly

You have just successfully completed your first Java applet using
the CodeWarrior IDE!
JAV–52 Targeting the Java VM

Programming Tutor ia l for Java
Exercise
Exercise
There is still more that can be done with this applet. This section dis-
cusses some improvements that can be made to the applet. As we
progress in this section, you can check your progress against the
files in the AboutBox Excercise folder if you are unsure of any-
thing.

Currently, the number of slides, the sequence in which to play the
slides, the slide to play the sound on, and the dimensions of the
image file are all “hard coded” into the applet. If we want to change
any of these things, we have to recompile the applet.

It would be much better if these things were supplied as parameters
in the HTML file, just as the sound file and image file are now. To
make it so, we need to change quite a few things in the Java source
file.

Number of Slides Parameter

Rather than having a predetermined number of slides, the user will
specify how many slides are in the slide show via a “slides “ pa-
rameter in the applet tag in the HTML file.

The following line of code in the Java file sets the value of the
numSlides variable:

int numSlides = 49;

Change this to:

int numSlides = 0;

This makes the default number of slides zero. To get the slides pa-
rameter, add the following line to the end of the section that loads
the parameters:

numSlides = Integer.parseInt(getParameter("slides"));
Targeting the Java VM JAV–53

Programming Tutor ia l for Java
Exercise
Slides Image Size and Orientation Parameter

The current applet has no provisions for a slides image with a
different width or height. It also has no provisions for using a
different orientation in the slides image - it assumes that the slides
will be stacked vertically in the slides image. We want the applet to
be more flexible in this respect.

First, we will make provisions for a new parameter called
orientation . Add the following line to the top of the file where
variables are initialized:

String orientation;

Then add the following line to the section that loads parameters:

orientation = getParameter("orientation");

The totalWidth and totalHeight variables are currently set to
319 and 4851 respectively when the applet loads. This is done at
the top of the file with the following lines:

//int totalWidth = 319;
//int totalHeight = 4851;

Change these lines to:

int totalWidth = 0;
int totalHeight = 0;

Just under the section of code that loads parameters, add the follow-
ing code. This code calculates the values for the totalWidth and
totalHeight variables based on the orientation, the size of the ap-
plet, and the number of slides in the slide show.

// calc total height & width
if ((orientation.equals("v")) |

(orientation.equals("vertical"))) {
totalHeight = getSize().height * numSlides;

} else {
JAV–54 Targeting the Java VM

Programming Tutor ia l for Java
Exercise
totalHeight = getSize().height;
}
if ((orientation.equals("h")) |

(orientation.equals("horizontal"))) {
totalWidth = getSize().width * numSlides;

} else {
totalWidth = getSize().width;

}

Now the applet will calculate the image width and height based on
the number and orientation of the slides and the size of the applet.

Sound Slide Trigger Parameter

The sound file is currently played when slide number 47 is dis-
played. And the only way to change that is to recompile the applet.
It would be a lot better to be able to specify this value in the HTML
file that calls the applet.

The following line at the top of the applet sets the value of the
trigger variable to 47 when the applet loads:

int trigger = 47;

Change this line to:

int trigger = 0;

Add the following line to the section of the code that loads the pa-
rameters:

trigger = Integer.parseInt(getParameter("trigger"));

Now the user may specify the sound trigger via a “trigger ” pa-
rameter in the applet tag in the HTML file.
Targeting the Java VM JAV–55

Programming Tutor ia l for Java
Exercise
Slide Sequence Parameter

The last thing we want to do is allow the user to specify the slide se-
quence via a sequence tag in the HTML file.

The following line at the top of the Java file defines and initializes
the sequence array:

//private int sequence[] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,
47,48,49,48,49};

Change this line to:

private int[] sequence;

Add the following code just after the section of code that calculates
the total height and width of the image:

// generate the sequence array
StringTokenizer st = new

StringTokenizer(getParameter("sequence"),",");
sequence = new int[st.countTokens() + 1];
int x = 1;
while(st.hasMoreTokens()) {

sequence[x] = Integer.parseInt(st.nextToken());
x = x + 1;

}

The code above uses the StringTokenizer class to parse the sequence
string and extract the elements of the array. StringTokenizer is part
of the java.util package, which is not currently imported in the Java
file. Add the following line to the very top of the file:

import java.util.*;

Now the sequence can be specified via a sequence tag in the
applet tag in the HTML file.
JAV–56 Targeting the Java VM

Programming Tutor ia l for Java
Exercise
Using HTML Tags to Supply the New Parameters

To supply the new parameters we just made provisions for, you will
add new parameters to the applet tag in the HTML file. Four new
parameters are required: “slides ”, “orientation ”, “trigger ”,
and “sequence ”. Open the index.html file. This is the current ap-
plet tag:

<applet codebase="AboutBox" code="AboutBox.class" width="319"
height="99" image="AboutBox.gif" sound="metalstamp.au">
</applet>

Change it to:

<applet codebase="AboutBox" code="AboutBox.class" width="319"
height="99" image="AboutBox.gif" sound="metalstamp.au" slides="49"
orientation="vertical" trigger="47"
sequence="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45,46,47,48,49,48,49">
</applet>

That is it. No more modifications are required.

Choose Project > Run to make the project and run the new applet.

There are still things that can be done to this applet to make it better.
For instance, little checking is done to verify that the incoming pa-
rameters are valid.
Targeting the Java VM JAV–57

Programming Tutor ia l for Java
Exercise
JAV–58 Targeting the Java VM

4
Creating Java
Projects
This chapter explains how to create and manage any Java project,
and how to set the options in the Java Project settings panels.

This chapter contains these sections:

• Types of Java Projects describes the types of Java projects you
can create with CodeWarrior.

• Using Project Stationery describes each project stationery op-
tion in the New Projects dialog box.

• Working with Java in CodeWarrior describes how to create
and manage any Java project from start to finish.

• Using the classes.zip Library describes what is in classes.zip,
the library file that is in most every Java project, and how to
add it to a project.

Types of Java Projects
This section discusses the various types of code objects that you can
create for Java. They include the following:

• Applets

• Applications

• Libraries

Applets

An Applet is a small Java application that runs over the web, usu-
ally through a web browser. Applets can consist of multiple class
files or a single Jar file.
Targeting the Java VM JAV–59

Creat ing Java Projects
Using Project Stationery
Applications

Java Applications are executables that usually run through a Java
Interpreter. Java Applications can consist of multiple class files or a
single Jar file.

Libraries

A Java Library is a collection of Java classes that can be used in
many projects. Libraries are usually compiled into zip files (like
classes.zip) or Jar files.

Using Project Stationery
The New Project dialog box (Figure 4.1) displays a list of several
different pre-configured projects and their associated files, called
Project Stationery.

Figure 4.1 New Project dialog box
JAV–60 Targeting the Java VM

Creat ing Java Projects
Working with Java in CodeWarrior
Each set of project stationery is pre-configured for different types of
Java projects. This saves you time when creating your own project
files as you only need to change a few options instead of setting up a
project from scratch.

Table Table 4.1 lists each project stationery option.

Table 4.1 Project stationery options

NOTE: Project stationery is configurable by the user. The sup-
plied stationery may vary between releases of CodeWarrior. Be-
cause of this, what you see in the New Project window may be
slightly different from the pictures in this manual.

Working with Java in CodeWarrior
This section describes how to create, run, and debug any kind of
Java project, including applets, applications, and libraries. The top-
ics in this section are:

• Creating a New Java Project

• Creating Java Code

• Changing Settings

Stationery Description

Java Applet Pre-configured settings for a Java applet.
Output is a class folder.

Java Application Pre-configured settings for a Java applica-
tion. Output is a Jar file.

Java App-Applet A multi-target project (Applet & Applica-
tion) that demonstrates how to use Ap-
pletFrame.java to turn your applet into
an application.

Java Library Pre-configured settings for a Java library.
Output is a Jar file.
Targeting the Java VM JAV–61

Creat ing Java Projects
Working with Java in CodeWarrior
• Running a Java Project

• Debugging a Java Project

• Kinds of Application Projects

Creating a New Java Project

The following procedure describes how to create a new Java project.
The project can be either an applet, an application, or a library of
Java code.

1. Create a new project.

Choose File > New Project. CodeWarrior displays the New Project
dialog box.

2. Select project stationery.

In the New Project dialog box, select the proper stationery for the
kind of project you want to create: applet, application, or library. To
learn more about various kinds of application projects, see “Kinds
of Application Projects” on page 67.

You may also decide whether to have CodeWarrior create a new
folder for you in which to place all your files. Typically you want to
create a new folder.

When you click the OK button, CodeWarrior displays a file dialog.

3. Name the project.

In the file naming dialog, enter a name for the project, and click OK.

If you use a suffix on the Windows hosted CodeWarrior, it must be
.mcp . If you do not use a suffix, CodeWarrior adds it for you.

TIP: If you want your project to be recognized by all versions of
CodeWarrior, the project suffix must be .mcp .

If the Create Folder check box was enabled in the New Project dia-
log box, CodeWarrior creates a new folder. Inside that folder,
CodeWarrior puts a new project file (with all project settings identi-
cal to the stationery project you selected), and duplicates any files
included in that stationery project.
JAV–62 Targeting the Java VM

Creat ing Java Projects
Working with Java in CodeWarrior
For example, for an applet, you get a new project file, an HTML file,
named TrivialApplet.html, and a Java source file named
TrivialApplet.java .

The project file has the name you entered in the dialog box. The new
folder has the same name as the project file without any naming ex-
tension.

WARNING! The project manager also creates a directory named
MyProject Data, where MyProject is the name of your project.
CodeWarrior uses this directory to store internal data. Do not mod-
ify or move any file in this directory.

After creating the files and folder, CodeWarrior displays a new
project window, like the one in Figure 4.1.

Figure 4.2 The Java Applet project

The stationery projects hold example files. In typical use you modify
these files and save them with a new name, or replace them with
your own files.
Targeting the Java VM JAV–63

Creat ing Java Projects
Working with Java in CodeWarrior
The classes.zip file is a shared library of standard Java classes
your applet can use. For more information, see “Using the
classes.zip Library” on page 68.

Creating Java Code

To create Java code, use the CodeWarrior tools: the editor, the
browser, and the project manager. For details on these tools, see the
IDE User Guide.

In typical practice, you start with a project based on stationery,
which includes example or “placeholder” files. To learn how to cre-
ate a project in this way, see “Creating a New Java Project” on page
62.

For example, if you are creating an applet based on the Java applet
stationery, there are two such files: TrivialApplet.java and
TrivialApplet.html .

The TrivialApplet.java file contains a sample Java applet. You
can open the file, replace its contents with your own code, and save
the file under a new name. You can add any other source file as
well.

NOTE: Each Java file must contain only one public class. The
file name must be the same name as the public class with the suf-
fix .java . For example, if the name of your class is MyClass, the
Java file must be named MyClass.java . If you do not follow this
convention, CodeWarrior may compile your project anyway, but
other Java compilers may not.

Similarly, the TrivialApplet.html file contains sample HTML
code. You can modify this file so that it displays your applet. You
typically specify both the location of the applet (a folder name) and
the name of the class containing the main function. You can set the
name of your classes folder by opening the Target Settings dialog
box, and modifying the name specified in the Output panel. See
“Target Settings” on page 92 and “Java Output” on page 112 for
more information.
JAV–64 Targeting the Java VM

Creat ing Java Projects
Working with Java in CodeWarrior
Changing Settings
If you use project stationery as a starting point, you generally will
not need to change many of the settings. The default settings are
perfect for most projects. However, this is not the case for all set-
tings or all projects. This is especially true if you have more than one
target in a project. You can modify a variety of settings for Java
projects. Each panel is explained in detail in “Target Settings for
Java” on page 91.

Common settings you might change are the main class (for Java ap-
plications) and the output name (the name of your final program).
For applications you may also choose whether to output your files
in a class folder, or in a zip file.

Specifying the main class

To tell CodeWarrior the name of your main class for a Java applica-
tion, go to the Java Target panel, make sure that you are creating an
application, and set the name in the Main Class field in the panel.
For more information, see “Main Class” on page 98.

Specifying output name

To tell CodeWarrior what to name your final output file (be it an ap-
plet or an application), go to the Java Output panel and enter the
name in the Name field. For more information, see “Java Output”
on page 112.

Specifying output type

To tell CodeWarrior whether to create a class folder or a Jar file, go
to the Java Target panel and set the Output Type option. For more
information, see “Java Target” on page 95.

Running a Java Project

You may run applets and applications. You cannot run libraries. To
run a project, choose Project > Run. At that time, CodeWarrior com-
piles and links any changed files, and launches your program. Pre-
cisely how your program launches depends upon whether it is an
applet or an application.
Targeting the Java VM JAV–65

Creat ing Java Projects
Working with Java in CodeWarrior
Running a Java applet

When developing an applet, you typically have a small HTML file
that embeds the applet code. CodeWarrior uses this file to run your
program from within the IDE. When you choose Project > Run,
CodeWarrior opens the first HTML file in the Link Order view with
an HTML browser or applet viewer. In other words, the order of
HTML files in the File view in the Project Window does not matter.
It is the order as shown in the Link Order view in the Project Win-
dow.

NOTE: For applet projects, if there is no HTML file in your
project, the Run command is disabled.

You can add as many HTML files as you want to a project. If your
applet is complex, you may want several HTML files that test differ-
ent aspects of your applet. To change the HTML file that CodeWar-
rior uses, simply rearrange the files in the Link Order view of your
project window.

NOTE: You can also run an applet by opening one of its HTML
files with any Java-enabled browser.

Running a Java application

To run an application, choose Project > Run in the CodeWarrior
IDE. The Virtual Machine chosen in the Java Target settings panel
loads the application’s code and runs the main method of the appli-
cation’s main class. If you entered a value in the Main Class field in
the Java Target settings panel, it will use that class. Otherwise, it
will assume the main class is the first class in the first file in the
project window. For more information on how to specify the main
class, see “Main Class” on page 98.

NOTE: On the Mac OS, if you run a droplet by dragging and
dropping files onto it, the full pathnames of those files are passed
as arguments to the main class’s main method. Note that if you
JAV–66 Targeting the Java VM

Creat ing Java Projects
Working with Java in CodeWarrior
run a droplet by double-clicking it or choosing Project > Run, you
cannot specify arguments for it.

Debugging a Java Project

You debug an applet project the same way you debug any other
project. For more information on the CodeWarrior debugger, con-
sult the IDE User Guide. For more information on Java-specific fea-
tures in the debugger, see “Debugging Java Projects” on page 71.

To debug a Java project, follow these steps:

1. Turn on debugging.

This step can be skipped if debugging is already enabled.

Choose Project > Enable Debugger. You may see a dialog box tell-
ing you that certain settings must be modified for debugging. Click
the OK button, and CodeWarrior sets up debugging automatically.
In the project window, black dots appear in the debugging column
next to the source files.

2. Run the project under the debugger.

Choose Project > Debug. CodeWarrior compiles any changed files
and generates debugging information for all files that have a black
dot in the debugging column of the project window. CodeWarrior
launches your project using the appropriate mechanism for your
project. For a discussion of this process, see “Running a Java
Project” on page 65.

Once the project is running, control returns to the debugger. You
can now debug the applet like you would any other program. For
more information on the debugger, see the Debugger User Guide. For
more information on Java-specific features in the debugger, see
“Debugging Java Projects” on page 71.

Kinds of Application Projects

CodeWarrior lets you create Java applications that you can run
without any applet viewer or browser.
Targeting the Java VM JAV–67

Creat ing Java Projects
Using the classes.zip Library
These are the other types of applications you might create for spe-
cific purposes:

• A Jar file is an archive of all your classes. It is a convenient
way to transfer and organize all the class files and any associ-
ated other files in one package.

• A class folder is a folder that contains all your classes. Choose
it if you need to run the application on computer platforms
that cannot use zip files.

All these files types contain Java bytecodes that will run on any
computer platform that supports Java. However, standalone appli-
cation files use special utilities to launch them without the help of
java-enabled browsers.

Use an application when you will use the file only on a Mac OS
computer. Use a jar file or class folder when you will use the file on
other computer platforms as well.

Using the classes.zip Library
The classes.zip file is a library of Java classes that all Java pro-
grams share. It includes all the packages in the Java API, such as the
Abstract Windowing Toolkit (AWT), I/O, and Applet packages.

The location depends on where JDK is installed on your machine.
Following is a list of the locations where the classes.zip file can nor-
mally be found:

Windows inside the Java folder of the System folder

Mac OS in a Classes folder in a subfolder of your Extensions folder

Solaris in the lib directory of the JDK directory

Almost every Java program that you create uses classes.zip .
However, classes.zip is a large file (about 1.5 megabytes). So
you probably do not want to copy it into every one of your Java ap-
plications and applets.
JAV–68 Targeting the Java VM

Creat ing Java Projects
Using the classes.zip Library
Figure 4.3 The Import Weak Classes Setting

To instruct CodeWarrior not to merge the Classes.zip file into
the final output, first select the Classes.zip file in the project win-
dow. Then choose Window > Project Inspector to open the Project
Inspector. Make sure that the Merge Into Output checkbox is not
checked. CodeWarrior do not copy the library into your finished
program.

To enable your project to compile without the Classes.zip li-
brary, make sure that the Import Weak checkbox is checked. With
Targeting the Java VM JAV–69

Creat ing Java Projects
Using the classes.zip Library
these settings, your program will automatically look for the library
on the host system when it is executed.

The Project Inspector window should now appear as in Figure 4.3.

classes.zip is automatically set up this way for you whenever
you create a project with Metrowerks-supplied project stationery,

NOTE: The Initialize Before option is ignored by the CodeWar-
rior Java compiler. Merge Into Output will add Classes.zip to
the final binary.
JAV–70 Targeting the Java VM

5
Debugging Java
Projects
The CodeWarrior debugger lets you debug Java code as easily as C/
C++ or Pascal code. This chapter assumes you are already familiar
with the CodeWarrior debugger. If you need more information
about the debugger, see the IDE User Guide. If you want a quick tu-
torial showing you how to use the debugger with Java, see “Pro-
gramming Tutorial for Java” on page 25. If you want step-by-step
information on running a Java project under the debugger, see “De-
bugging a Java Project” on page 67.

This chapter contains the following sections:

• Debugger Features and Limitations describes some of the
features in the debugger that help you debug Java code and
some limitations of the debugger.

• Special Debugger Features for Java goes into more detail
about some special debugger features for Java.

NOTE: To debug Java source on Windows, you must install Mi-
crosoft Internet Explorer or the Sun JDK. Both are included on
your CodeWarrior CD.
Targeting the Java VM JAV–71

Debugging Java Projects
Debugger Features and Limitations
Debugger Features and Limitations
The CodeWarrior Debugger contains many features that are specifi-
cally for debugging Java projects. It lets you:

• Debug Jar files, class files and applications.

• View a disassembly of the Java Virtual Machine instructions
for your class, described in “Viewing the Java VM Disassem-
bly” on page 75.

• Debug multi-threaded programs, as described in “Debug-
ging Threads” on page 74.

• Break on Java exceptions, described in “Breaking on Java Ex-
ceptions” on page 73.

The debugger has a few limitations:

• Due to a limitation in the Sun 1.1.6 VM, Jar file debugging is
not supported when using version 1.1.6 of Sun’s VM. JDK 1.2
and later does support jar file debugging.

• On Windows and Solaris, multi-language stepping is not
supported. When debugging a Java program with native C
methods in it, the debugger treats it as a Java program and it
will not be able to step into any native code.

• On the Macintosh, multi-language stepping is not fully sup-
ported. If you implement some native methods in C, you can
open both the Java class files and the C SYM files for the na-
tive methods in the debugger at the same time. And if you set
breakpoints in both the C and Java files, the debugger will
automatically break at those statements. However, the stack
crawl window does not show the call chain across languages
and you cannot single step from C code to Java code or from
Java code to C code.

• The debugger cannot debug compressed Jar or compressed
zip files. This includes Java applications that are in com-
pressed Jar or compressed zip format.

• When using the new Sun Java Debugger plugin, you will not
be able to debug external stand-alone Java libraries. For in-
structions on how to debug Java code that does not originate
within your Java project, see “Debugging External Java Ses-
sions (Windows Only)” on page 78.
JAV–72 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
Special Debugger Features for Java
This section explains some of the special CodeWarrior Debugger
features for Java. It contains the following:

• Breaking on Java Exceptions

• Opening Multiple Class Files in One Browser

• Choosing a Java Applet Viewer for Debugging

• Debugging Threads

• Viewing the Java VM Disassembly

• Specifying Java Debugger Settings

• Debugging External Java Sessions (Windows Only)

• Java Settings Panel (Windows Only)

Breaking on Java Exceptions

The CodeWarrior debugger can automatically break when your
class throws an exception. Just choose one of these options from the
Control > Break on Java exceptions hierarchical menu.

Opening Multiple Class Files in One Browser

If you are debugging a project that creates multiple class files, you
can view all the class files for a folder in one Browser window. Just
turn on the Debug all class files in directory hierarchy option in the
Global Settings IDE Preferences panel. When you open a class file,
the Browser window displays the classes for that file as well as for
all the files in the same folder and its subfolders. If this option is off,
the Browser window displays the classes for one class file only.

Option Debugger breaks on exceptions from…

All exceptions Any class, including the Java API classes.

No exceptions No classes.

Exceptions in targeted
classes

Only those classes in the file that you opened.
(This option is available only on Mac OS.)
Targeting the Java VM JAV–73

Debugging Java Projects
Special Debugger Features for Java
Choosing a Java Applet Viewer for Debugging

When debugging a Java applet, the applet runs within an applet
viewer or a Java-aware HTML browser like such as Internet Ex-
plorer. To learn how to specify the applet viewer, see “Applet” on
page 95.

NOTE: Although many applications can run an applet on
Mac OS, you can only use Apple MRJ to run an applet under the
Metrowerks debugger. This is because the debugger requires the
application to support Metrowerks’s Java debugging API, and this
is the only Virtual Machine that does so at this time.

Debugging Threads

When you are debugging a Java program, the running process is ei-
ther the specified applet viewer, or the Java interpreter.

You can view all the threads in a Java program in the Processes win-
dow. Choose Window > Show Processes and select the specified
applet viewer, or the Java interpreter process in the left pane. The
Java threads appears in the pane to the right.
JAV–74 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
Figure 5.1 The Processes Window

To display a debugger Program window for a thread, double-click
it. To pause, continue, or kill a thread, select it and use the buttons
in the Processes window.

NOTE: Many of the threads listed in the processes window are
spawned by the applet viewer or interpreter running the Java pro-
gram, or threads for the CodeWarrior Debugger. Pausing or killing
one of them will have unforeseeable (and possibly quite unfortu-
nate) consequences.

Viewing the Java VM Disassembly

You can view a listing of the Java Virtual Machine instructions that
implement the class. Choose Assembler or Mixed from the Source
pop-up menu at the bottom of any Browser or Program window
(Figure 5.2).

The mixed view shows your Java source first, then the assembly lan-
guage instructions that make up the Java code immediately after.

See also “Disassembling Classes” on page 151.
Targeting the Java VM JAV–75

Debugging Java Projects
Special Debugger Features for Java
Figure 5.2 Viewing Java Assembly

When viewing the assembly, you can still set breakpoints, step
through code, and view variables. You can also view the assembly
for a Java file in CodeWarrior by choosing Project > Disassemble.
JAV–76 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
Specifying Java Debugger Settings

There is one setting in Global Settings panel of the debugger group
in the main IDE Preferences dialog that applies to Java: Debug all
Java class files in directory hierarchy.

Figure 5.3 Global Settings Panel

The Debug all class files in directory hierarchy option opens all the
class files in the directory and all contained directories, and merges
them all together in the same Browser window.
Targeting the Java VM JAV–77

Debugging Java Projects
Special Debugger Features for Java
Debugging External Java Sessions (Windows
Only)

This section discusses how to launch and debug a Java application
that runs within a native Windows application.

In the text that follows, we make several references to a folder
named VM Launcher Example on the CodeWarrior CD. It is in the
following location.

CodeWarrior Examples/CodeWarrior Java/

About Sun VM Debugging

To better understand what is needed to debug an external Java ses-
sion with CodeWarrior using the Sun Java VM, it is important that
you know the following:

• Sun VM debugging sessions are done over TCP/IP sockets.

• In order to debug a Java VM, the VM must be launched with
special switches that make it responsive to a debugger. These
switches can be stored in an environment variable. This envi-
ronment variable must be set before the VM is launched.

• There is no way to detect whether there are any VM sessions
running in debug mode at any particular time, or which of
them will accept a connection from a debugger.

Because of these things, attaching to a running VM requires that the
following be true:

1. The VM must be launched to be debuggable on a particular
TCP/IP port.

2. The debugger must attach to the known TCP/IP port once
the VM has been launched.

So, you can see that attaching to a running Java VM is not as seam-
less as attaching to a native Windows executable.
JAV–78 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
Registering TCP/IP Debugger Ports

The first thing you must do is configure CodeWarrior so that it will
allow you to attach the Java debugger to a TCP/IP port. You must
define one or more ports that CodeWarrior will use for debugging.

The way to define the port(s) is via the registry. The VM Launcher
Example folder contains a file named DebugPorts.reg for this
purpose. Examine the file in Notepad by right-clicking the file and
choosing Edit from the resulting pop-up menu. The file should ap-
pear similar to Listing 5.1. Edit the port numbers to suit your needs.
Then save and close the file.

Listing 5.1 DebugPorts.reg

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Metrowerks\CodeWarrior\4.0\Java VMs]
“JDWP debug ports”=”8000,8001,8002,8003”
“11XWP debug ports”=”8004,8005,8006,8007”

JDK versions 1.1.x, 1.2, and 1.2.x support 11XWP debugging ports.
Only JDK version 1.2.2 with JBug installed supports JDWP debug-
ging ports. The value data must consist of one or more port num-
bers, separated by commas. For more information on debugging
with JDWP, see the Sun Java Debugger plugin release notes.

To add the contents of DebugPorts.reg to the registry, simply
double-click the file. Windows creates the appropriate key in the
registry, and adds the values to it.

WARNING! TCP/IP port numbers are limited to the range of 0-
65535. Ports below 8000 are reserved and should not be used.
So, you can use any port above 8000, assuming no other applica-
tion on your system is using that port, too.
Targeting the Java VM JAV–79

Debugging Java Projects
Special Debugger Features for Java
Instructing the VM to Run in Debug Mode

The next step is to ensure that when the native application launches
a VM session, it does so in debug mode. Modifying a native applica-
tion itself to launch the VM in debug mode is not practical. Instead,
we use environment variable _JAVA_OPTIONS, which is new in
JDK 1.2. Options defined via this environment variable will be used
any time a VM session is instantiated.

Because you may not want to always run Java sessions in debug
mode (for performance and security reasons), you will usually want
to specify the _JAVA_OPTIONS on a per session basis. The best way
to do this is to use a command (.cmd) file.

The VM Launcher Example folder contains two example com-
mand files. One is to be used with a standard non-debug JDK 1.2;
the other is for a JDK 1.2.2 installation that has the JBug binaries in-
stalled (and hence supports the new Sun debugger specification).

NOTE: The command files require a minor modification to work
correctly. The path to JDK should be changed to the location of
JDK on your particular system. Examine the command files for
more information.

Instead of launching VMLaunch.exe directly, you will launch these
command files. The command files will set the _JAVA_OPTIONS en-
vironment variable, and then launch VMLaunch.exe for you.

Initiating a Debug Session

To show you how to attach CodeWarrior’s debugger to a VM that is
embedded in a native application, we have provided a short tutorial
in the VM Launcher Example folder. Follow the steps below.

1. Import DebugPorts.reg into your registry.

In the Windows Explorer, double-click the file named Debug-
Ports.reg . Windows creates a matching registry key.

2. Open the VMLaunch.mcp project.
JAV–80 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
3. Verify the path to your JDK.

Open VMLaunch.cpp . Make sure USE_1_2_JDK is defined, and
that the LoadLibrary() call is pointing to your particular JDK in-
stallation, as only 1.2 VMs and later can be seemlessly attached to.

4. Build the project.

Choose Project > Make to build the project.

5. Verify the PATH environment variable in the command file.

Open the file named LaunchMe.cmd by right-clicking on it and
choosing Edit from the resulting pop-up menu. Verify that the ex-
tension to the JDKPATH environment variable matches the location
of JDK on your particular system. Close the file when you are done.

The LaunchMe_Jbug.cmd file is provided for attaching to a JBug/
JDWP enabled VM. You may use this file in place of
LaunchMe.cmd .

6. Launch the command file.

From Windows Explorer, launch LaunchMe.cmd . Ensure that the
Java application runs without problems.

7. Open TrivialApplication.class

Select File > Open. The file selection dialog box is displayed.
Change the Files of Type pop-up menu to Java Class Files. The dia-
log box displays the TrivialApplication.class file. Double-
click TrivialApplication.class to open it. The browser win-
dow displays the class information for this class.

8. Open the Process Window.

Select Window > Process Window to open the Processes window.

9. Open the debugger port.

Double-click on "11XWP debug port 80004 (inactive)" in the list. The
debugger attaches to the VM.

The CW Java Output Window displays the output of the Java appli-
cation. Set a break point in TrivialApplication by selecting it in
the browser window. The debugger takes control and lets you step
through the program.
Targeting the Java VM JAV–81

Debugging Java Projects
Special Debugger Features for Java
Java Settings Panel (Windows Only)

The Java Settings panel (Figure 5.4) controls how the debugger in-
teracts with JView when debugging Java applets or applications.

Figure 5.4 The Debugger’s Java Settings preferences panel

The items in this panel are:

Class for Debugging

This field specifies the particular class you wish to debug.

Program Arguments

This field specifies command-line arguments to be passed to your
Java program when the debugger launches the program.

JView Arguments

This field specifies arguments to be passed to the jview interpreter
by the debugger when it launches the Java application. Argument
options are shown in Table 5.1.

Class for Debugging Program Arguments

JView Arguments
JAV–82 Targeting the Java VM

Debugging Java Projects
Special Debugger Features for Java
Table 5.1 Jview argument options

Option Description

/? displays usage text

/cp <classpath> set class path

/cp:p <path> prepend path to class path

/cp:a <path> append path to class path

/n <namespace> namespace in which to run

/p pause before terminating if an error oc-
curs

/v verify all classes

/d:<name>=<value> define system property

/a execute AppletViewer
Targeting the Java VM JAV–83

Debugging Java Projects
Special Debugger Features for Java
JAV–84 Targeting the Java VM

6
JavaDoc
JavaDoc is a batch compiler written in Java by JavaSoft™. It pro-
cesses Java source code files, and uses the comments preceding
classes, methods, etc. to generate HTML based documentation for
the code. The Java API documentation on your CodeWarrior CD
was generated by this compiler.

There is one primary topic discussed in this section:

• CodeWarrior JavaDoc Implementation

• Using JavaDoc

CodeWarrior JavaDoc Implementation
CodeWarrior implements JavaDoc as a Pre-Linker because of the
batch nature of the JavaSoft compiler. The JavaSoft version of Java-
Doc must know about all the compiled files simultaneously. In the
current CodeWarrior plugin architecture, a compiler works on one
file at a time, but a linker knows about all compiled files. So JavaDoc
in CodeWarrior is implemented as a pre-linker.

Another added benefit of implementing JavaDoc as a pre-linker is
speed. Creating JavaDoc files should be the last thing you do in with
your Java project. Assuming this is true, your code will have al-
ready been compiled and tested. At this point, when you execute
JavaDoc, the process is very fast as everything the pre-linker needs
to know was already done at compile time. No need to recompile,
just relink.

The JavaDoc plugin uses the Sun JDK or JRE 1.1.6. Therefore, Sun
JDK or JRE 1.1.6 must be installed in the system folder in order for
JavaDoc to work.
Targeting the Java VM JAV–85

JavaDoc
Using JavaDoc
Using JavaDoc
Using JavaDoc is as simple as choosing the JavaDoc pre-linker, and
compiling the files.

1. Choose pre-linker for JavaDoc target.

Choose Edit > Target Settings, where Target is the name of your
current Java target. Choose Target Settings from the list of panels
on the left so that the Target Settings panel is displayed. Choose Jav-
aDoc Pre Linker from the Pre-Linker pop-up menu in the Target
Settings panel (Figure 6.1). Click Save to save changes. Close the
Target Settings dialog box. Click OK for subsequent warning dia-
logs.

Figure 6.1 Choosing JavaDoc linker

2. Set JavaDoc Project options.

Choose the settings you wish to use for JavaDoc from the JavaDoc
panel (Figure 6.2). For a full description of each setting in this panel,
see “JavaDoc” on page 115.
JAV–86 Targeting the Java VM

JavaDoc
Using JavaDoc
Figure 6.2 JavaDoc panel

Choose Project > Make. JavaDoc creates a new folder in the same
folder as your project called “Docs”.

The last step is to open the HTML files in your preferred HTML
Browser (Figure 6.3). A separate HTML file is generated for every
public Java class included in the target. There are also some default
files generated depending on the structure of your Java project.

You may find some links do not work. This is because your project
does not include this information. For example, if your project does
not include packages, the link to Packages.html fails because the
file was not generated by JavaDoc.

The images used in the HTML documents are not automatically
generated by JavaDoc, though the HTML source that references
these images is generated. You may create your own images to use,
Targeting the Java VM JAV–87

JavaDoc
Using JavaDoc
use the images from the Java API documentation, or use the images
supplied with your CodeWarrior installation. The images provided
with the CodeWarrior installation are located in the following
places:

Windows Metrowerks CodeWarrior\Java Support\Metrowerks\Jav-
aDoc\images

Macintosh Metrowerks CodeWarrior:JavaSupport:Metrowerks:Java-
Doc:images

Solaris Metrowerks CodeWarrior/Java Support/Metrowerks/Jav-
aDoc/images
JAV–88 Targeting the Java VM

JavaDoc
Using JavaDoc
Figure 6.3 ImageMap Doc Class in Browser
Targeting the Java VM JAV–89

JavaDoc
Using JavaDoc
JAV–90 Targeting the Java VM

7
Target Settings for
Java
CodeWarrior target settings are options you can specify to determine
various aspects of your project’s behavior, such as how it compiles
and links. Choosing the right settings can significantly improve the
size and speed of your final code.

Target settings are organized into panels that you can display in
CodeWarrior’s target settings window (Figure 7.1). Different set-
tings panels control various properties of the project.

Figure 7.1 Target Settings Window
Targeting the Java VM JAV–91

Target Sett ings for Java
Target Settings
This chapter discusses only those project settings panels that relate
specifically to Java programming:

• Target Settings

• Java Target

• Java Command Line

• Java Language

• FTP Post Linker

• Java Mac OS Post Linker

• Java Output

• JavaDoc

NOTE: Some of these settings panels may not be available in
your particular version of CodeWarrior.

See the IDE User Guide, C Compilers Reference, and Pascal Compilers
Reference for information about other settings panels available in the
Target Settings Dialog.

Target Settings
The Target Settings panel is the most critical panel in CodeWarrior.
This is the panel where you pick the operating system and/or mi-
croprocessor your project is to run on.

The Target Settings panel, shown in Figure 7.2, allows you to set the
name of your target, as well as which linker and post linker plugins
to use for the target. When you select a linker, you are specifying the
target operating system and/or chip. The other panels available in
this dialog box will change to reflect your choice.

Because the linker choice affects the visibility of other related pan-
els, you must set which linkers your project will use before you can
specify other target-specific options like compiler and linker set-
tings.
JAV–92 Targeting the Java VM

Target Sett ings for Java
Target Settings
Figure 7.2 Target Settings Panel

The items in this panel are:

Target Name

Use the Target Name field to set or change the name of a build tar-
get. When you use the Targets view in the Project window, you will
be able to see this name.

This is not the name of your final output file. It is the name you as-
sign to the build target for your project file to use. The name of the
final output file is set in the Java Output panel.

Linker

Choose a linker from the items listed in the Linker pop-up menu.

Target Name Post-linker

Linker Output Directory

Pre-linker Save project entries using rela-
tive paths
Targeting the Java VM JAV–93

Target Sett ings for Java
Target Settings
Pre-linker

Some targets have pre-linkers that perform additional work (such as
a data format conversion) before linking. There is one pre-linker for
Java: the JavaDoc Pre-Linker.

See also “JavaDoc” on page 85.

Post-linker

Some targets have post linkers that perform additional work (such
as a data format conversion) on the final executable. The post link-
ers available for your use are described in Table 7.1:

Table 7.1 Post Linker Documentation

Output Directory

This is the directory where your final linked output file will be
placed. The default location is the directory that contains your
project file. Click the Choose button to specify another directory.

Save project entries using relative paths

When enabled, this setting allows the IDE to distinguish between
files with the same names but in different directories. If you do not
have files with the same name in your project, you can leave this op-
tion off.

FTP Post Linker “FTP Post Linker” on page 106

Java Mac OS Post Linker “Java Mac OS Post Linker” on
page 108

JCommand Line “Java Command Line” on page
100
JAV–94 Targeting the Java VM

Target Sett ings for Java
Java Target
Java Target
The settings you can specify on the Java Target panel depend on
whether you are creating an applet, a library, or jar file.

The settings in this panel change based on which option is selected
in the Target Type pop-up menu. This section contains the follow-
ing sections:

• Applet

• Application

• Library

Applet

If the Target Type pop-up menu is set to Applet as shown in Figure
7.3, CodeWarrior will create a Java applet from your project when
you build it.

Figure 7.3 Target Type set to Applet

Applet Viewer (Windows)

On Windows, this area of the panel contains a pop-up menu as
shown in Figure 7.4. The menu contains an item for each applet
viewer found on your computer, and an Other item, which enables
the Choose button.
Targeting the Java VM JAV–95

Target Sett ings for Java
Java Target
Figure 7.4 Windows Applet Viewer area

Applet Viewer (Mac OS and Solaris)

On Mac OS and Solaris, this area of the panel conatins a text field
which displays the currently-selected applet viewer (Figure 7.5).
Currently, Sun’s appletviewer program is the only supported ap-
plet viewer on Solaris.

Figure 7.5 Mac OS and Solaris Applet Viewer area

Choose

To use an applet viewer other than those listed by default, click the
Choose button. CodeWarrior displays an open file dialog box, al-
lowing you to locate and select another applet viewer.

Virtual Machine (Solaris)

CodeWarrior uses the JDK 1.1.6 Virtual Machine by default. The
items in this pop-up menu reflect the contents of the
(jdk_options) folder, which resides in the JavaSupport folder
of CodeWarrior. The IDE scans this folder when building this pop-
up menu and adds to the menu any files it finds in the folder.
CodeWarrior includes jdk1.1.6 and jdk1.2 by default.
JAV–96 Targeting the Java VM

Target Sett ings for Java
Java Target
The files in the (jdk_options) folder are expected to be soft links
to the root level of the JDK package in question. Items can be added
to this menu to allow you to run your applets with newer versions
of JDKs as they become available. The JDK package itself must re-
side in the JavaSupport folder. And a soft link to that package
must be placed into the (jdk_options) folder.

For example, to add a menu item for JDK 1.3, you would issue the
following commands in a terminal:

cd /usr/local/Metrowerks/CodeWarrior3.3/JavaSupport/
ln -s “(jdk1.3)” “/(jdk_options)/jdk1.3

This creates a soft link in the (jdk_options) folder which points
to the (jdk1.3) folder which resides in the JavaSupport folder.
The next time the menu is built, it will contain the new link.
Targeting the Java VM JAV–97

Target Sett ings for Java
Java Target
Application

If the Target Type pop-up menu is set to Application as shown in
Figure 7.6, CodeWarrior will create a Java application from your
project when you build it.

Figure 7.6 Target Type Set to Application

VM Arguments (Solaris only)

The VM Arguments field is only available on Solaris. It allows you
to specify the options you would normally specify in the java com-
mand line. When you launch your Java application from within the
CodeWarrior IDE, these arguments will be bpassed to the VM. Mul-
tiple arguments must be delimited by spaces.

Main Class

The Main Class field identifies the name of the class containing the
main() method in a Java application. Enter only the name of the
JAV–98 Targeting the Java VM

Target Sett ings for Java
Java Target
class. Do not use the .class extension. You are specifying the class
itself, not the file.

CodeWarrior passes this name to the VM running the application so
it can begin execution. This field must have a value in order to run a
Java application.

NOTE: the main() method must be declared public static
void main(String args[]) , and must be in a public class.
Also, the capitalization of the name in the Main Class field must
match the capitalization in the Java file. In Java, myclass and My-
Class are different classes.

Parameters

Enter any arguments you wish to pass to the main() method when
the application launches. A series of arguments must be delimited
by spaces.

Virtual Machine (Windows)

The Windows-hosted CodeWarrior IDE uses the Windows VM by
default. You may also use Suns JDK VM.

Virtual Machine (Solaris)

The Solaris-hosted CodeWarrior IDE uses the JDK 1.1.6 Virtual Ma-
chine by default. The items in this pop-up menu reflect the contents
of the (jdk_options) folder, which resides in the JavaSupport
folder of CodeWarrior. The IDE scans this folder when building this
pop-up menu and adds to the menu any files it finds in the folder.
CodeWarrior includes jdk1.1.6 and jdk1.2 by default.

The files in the (jdk_options) folder are expected to be soft links
to the root level of the JDK package in question. Items can be added
to this menu to allow you to run your applets with newer versions
of JDKs as they become available. The JDK package itself must re-
side in the JavaSupport folder. And a soft link to that package
must be placed into the (jdk_options) folder.
Targeting the Java VM JAV–99

Target Sett ings for Java
Java Command Line
For example, to add a menu item for JDK 1.3, you would issue the
following commands in a terminal:

cd /usr/local/Metrowerks/CodeWarrior3.3/JavaSupport/
ln -s “(jdk1.3)” “/(jdk_options)/jdk1.3

This creates a soft link in the (jdk_options) folder which points
to the (jdk1.3) folder which resides in the JavaSupport folder.
The next time the menu is built, it will contain the new link.

Working Directory (Mac OS and Solaris only)

The Working Directory field is optional.The default working direc-
tory is the directory where the VM resides. Set this field if you re-
quire a different working directory.

Library

If the Target Type pop-up menu is set to Library as in Figure 7.7,
CodeWarrior creates a Java library from your project.

Figure 7.7 Target Type Set to Library

Java Command Line
The Java Command Line panel (Figure 7.8) allows you to launch a
Java application after your project is successfully built to do further
processing of your project output.

For instance, you may use it to launch RMIC, a Java utility that takes
.class files and generates stub classes. The java linker would gener-
JAV–100 Targeting the Java VM

Target Sett ings for Java
Java Command Line
ate the .class files. Then the RMI compiler (RMIC) would take those
class files and generate stub class files for use with RMI. Similar util-
ities can be found in the Classes.zip Java library file.

Figure 7.8 Java Command Line Panel

This panel contains the following items:

Main Class Name

Put the name of the main class of the application you want to be in-
voked into this field. Once your project is successfully built, the
linker will run the application.

Arguments

Put any arguments to be sent to the application into this field.

This linker adds paths to all zips and jars in the project to the VM
classpath. It also adds the project output to the classpath.

NOTE: Although this linker can execute any Java application
specified in the command line settings, its intended use is to in-
voke java command line post linker type tools (such as RMIC, ob-
fuscators, etc.). Therefore, there is no support for AWT based
apps nor apps which make use of System.in.
Targeting the Java VM JAV–101

Target Sett ings for Java
Java Language
WARNING! Since it is impossible for the post linker to know
what type of application it will be invoking, it is your responsibility
to make sure that only the appropriate type of command line tools
are run using it.

Java Language
The Java Language panel (Figure 7.9) contains project settings re-
lated to code generation for the Java platform.

Figure 7.9 Java Language panel
JAV–102 Targeting the Java VM

Target Sett ings for Java
Java Language
The options in this panel are:

Generate Profiler Information

This option adds timing information to your Java methods. You can
only profile Java applications. To use this option, you must include
Profiler.zip in your project. When your Java code finishes exe-
cuting, a new file is created with the timing data. You can view this
file with the MW Profiler application on Mac OS.

NOTE: The profiler is not currently available on Solaris.

Emit Dependency Map

This option is similar to generating a link map in other languages
such as C and C++. When enabled, a new file is created in the same
directory as your project file called sourcefile .JMAP, where
sourcefile is the name of your .java source file. The JMAP file
lists all the class dependencies for each class in the file.

For example, the statement import java.* is common in Java
source code. The dependency map tells you the exact class depen-
dencies. So the statement import java.* may become:

import java.applet.Applet;
import java.applet.AppletContext;

Generate Profiler Information Emit Headers for Native Meth-
ods

Emit Dependency Map Use Strict Java Filenames

Inlining Enabled Use Strict Source/Package Hi-
erarchy

Runtime Checks Browser Package Name Filter

Warn About Deprecated Meth-
ods
Targeting the Java VM JAV–103

Target Sett ings for Java
Java Language
You can then use these statements in your Java source files instead
of importing everything. This makes things cleaner, faster and more
portable to other Java compilers.

Inlining Enabled

Allows inlining of smaller methods where appropriate.

Runtime Checks

This option only effects the J2N (Java To Native) compiler, which is
currently in pre-release stages.

When this option is enabled, the J2N compiler generates runtime
checks required by Java, such as null pointers or array lengths. This
is useful for debugging; but is probably not neccessary in the final
application.

When this option is disabled, more optimized and efficient code is
generated; but no checks are performed.

Warn About Deprecated Methods

Gives warning messages if you are using any depreciated methods.
This allows you to find references to depreciated methods in your
code so that you can update your code to the newer methods.

Emit Headers for Native Methods

Emits headers for any native methods for every class in your project.
When this option is enabled, the Emit pop-up menu appears allow-
ing you to choose between JNI Headers and Sun VM Headers. JNI
is the newest and preferred method. However, for compatibility
reasons, you may wish to choose the Sun VM Headers option.

The other options that can be used in conjunction with Emit Head-
ers for Native Methods are Generate Comments in Headers and
Generate Headers for All Classes.

Generate Comments in Headers moves comments from the java
sources files to the native headers.
JAV–104 Targeting the Java VM

Target Sett ings for Java
Java Language
Generate Headers for All Classes generates the headers in a tree
(like sun/tools/java/Identifier.h) instead of mangled with the
package (like sun_tools_java_Identifier.h)

Use Strict Java Filenames

Forces strict class names based on the Java source file names. For ex-
ample, if you have a java source file called FooBar.Java, the compiler
expects to find a class called FooBar.class in this file. No other class
can be in this file.

NOTE: This option should be used in conjunction with Use Strict
Source/Package Hierarchy.

Use Strict Source/Package Hierarchy

Forces strict adherence to source and package hierarchy paths. For
example, if you have the following package:

Foo\bar\seam

The compiler expects a to find file seam.java in a directory called
“bar ” which is in a directory called “Foo.”

This option is only available when Use Strict Java Filenames is en-
abled.

Browser Package Name Filter

Accepts a semicolon delimited list of names that you do not want to
show up in the class browser. If you type in: java.io;
java.lang , the browser will only display File , Object and re-
flect.Method for classes like java.io.File , java.lang.Ob-
ject , and java.lang.reflect.Method .

You can also use wildcards like java.* , in which case the browser
will strip off the entire package for any class starting with “java.”

Finally, you can also type in “* ” (no quotes), in which case the
browser strips all packages off everything.
Targeting the Java VM JAV–105

Target Sett ings for Java
FTP Post Linker
FTP Post Linker
The FTP Post Linker panel allows you to move a folder containing
your completed Java binary and any associated files to a server to be
accessed through the World Wide Web.

Figure 7.10 FTP Post Linker panel

The items in this panel are:

Host Address Folder to Upload

User Name Binary Transfer

Password Generate Log

Remote Directory
JAV–106 Targeting the Java VM

Target Sett ings for Java
FTP Post Linker
Host Address

The host address of the server you want to upload your Java files to.

User Name

Your user ID on the host server.

Password

Your password on the host server.

Remote Directory

Directory you want to upload the Java files to on the host system.
You must have access privileges for this directory.

Folder to Upload

The full path to the folder on your local hard drive containing the
files to upload. There is no way to specify that individual files be
uploaded, so the linker will transfer the entire contents of the folder
specified here. Make sure you do not have any files that you do not
want transferred in this folder.

Binary Transfer

Transfer the files to the host system using Binary mode instead of
ASCII. It is recommended this option always be turned on to avoid
any transfer problems.

Generate Log

Generates a text log file of the transfer. Any errors or problems are
recorded in this file.
Targeting the Java VM JAV–107

Target Sett ings for Java
Java Mac OS Post Linker
Java Mac OS Post Linker
The settings in the Java Mac OS Settings panel control the opera-
tion of the Java Mac OS Post Linker. This post linker determines
how Mac OS Java applications are packaged.

The Mac OS Java Output Type pop-up menu can be set to one of
the following settings:

• JBindery

• Mac OS Zip

This section describes the settings for each option in detail.

JBindery

When the JBindery output type is selected, the panel appears as in
Figure 7.11. JBindery is an application that you use to package or
execute Java™ applications on the Mac OS platform.The settings
contained in this panel allow you to control how JBindery builds
your application.

The Java Mac OS Post Linker will launch JBindery using the foll-
wing settings.

Redirect stdout

This pop-up menu allows you to redirect stdout. You can either re-
direct stdout to a message window generated by JBindery, or you
can instruct JBindery to ignore stdout altogether.

Redirect stdin

This pop-up menu allows you to redirect stdin. You can either redi-
rect stdin to a message window generated by JBindery, or you can
instruct JBindery to ignore stdin altogether.
JAV–108 Targeting the Java VM

Target Sett ings for Java
Java Mac OS Post Linker
Figure 7.11 Output as JBindery

Enable method profiling

Check this checkbox to enable method profiling.

Size boxes intrude

This checkbox determines whether the size box should appear
within the corner of the actual window. If the size boxes intrude,
any Abstract Window Toolkit components that would normally ap-
pear under the size box are not drawn. If you do not check this box,
an extra strip of empty space is added to the bottom of the window
to accomodate the size box.

Merge zip file into app

If this checkbox is checked, the zip file will be merged into the final
application when you build your project.
Targeting the Java VM JAV–109

Target Sett ings for Java
Java Mac OS Post Linker
Verify Bytecodes

Check this checkbox if you want the code verifier to check local Java
bytecodes before execution. If this checkbox is not selected, JBindery
will still automatically check any bytecodes obtained from a remote
source (such as over a network).

HTTP Proxy

If you would like your application to use an HTTP proxy server,
check this checkbox, and supply the name and port ID of the proxy
server in the corresponding edit fields.

FTP Proxy

Check this checkbox if you would like your application to use an
FTP proxy server. Supply the name and port ID of the proxy server
in the corresponding edit fields.

Firewall Proxy

This option specifies whether you want to use a firewall proxy.
When this checkbox is checked, the Java application uses the fire-
wall proxy server specified in the name and port edit fields when
accessing servers outside the security firewall.

Creator

This edit field lets you specify the creator of your final Java applica-
tion.

Output Filename

This edit field lets you specify a creator for your Java application.
This unique string identifies the application and any documents
that the application may create. If you plan to publically distribute
your application, you must register its creator name with Apple
through Developer Technical Support to avoid collisions between
names used by different developers.

You can register a creator online or view currently registered cre-
ators at the following Web site:
JAV–110 Targeting the Java VM

Target Sett ings for Java
Java Mac OS Post Linker
http://devworld.apple.com/dev/cftype/main.html

Minnimum and Maximum app heap

These two edit fields let you specify the amount of memory to use
when executing this Java program. Mac OS Runtime for Java uses
temporary memory for most allocations (the Java virtual machine
and so on) so an application heap of 512K is usually sufficient.

Mac OS Zip

When the Mac OS Zip menu item is selected, the panel appears as
in Figure 7.12. Previous versions of the Java Linker copied Mac OS
resources into the output zip file. This was handy for adding 'vers'
resources to your zip file, for example. This option allows you to do
the same thing.

Figure 7.12 Output as Mac OS Zip

Create ‘old’ Mac OS resources — The Java Linker used to create
certain resources in the output zip file that were used to assist in
building standalone applications. These resources are no longer
needed by CodeWarrior, and are no longer written. However, with
JBindery in MRJ SDK 2.0.1, if you drop jar/zip files containing these
resources onto JBindery, it will still parse out the main class name
and the main arguments and use them. This option is available for
this reason.

Create New File — If this checkbox is checked, resources will be
added to a copy of the Java Linker output file, rather than the origi-
nal output file. Otherwise, resources will be merged into the Java
Targeting the Java VM JAV–111

Target Sett ings for Java
Java Output
Linker output file. Supply the name of the new file in the Output
filename edit field.

Java Output
The settings on the Java Output panel control the operation of the
CodeWarrior linker for Java. The Output Type can be:

• Class Folder

• Jar File

• Application

This section describes the settings for each option in detail.

Class Folder

If you choose Class Folder from the Output Type pop-up menu, the
IDE will create a new folder with the name you specify in the Name
field. Every class in your project will be placed in this folder.

The Mac OS has a 31 character maximum for filenames. The File-
name Truncation menu controls where the IDE will remove charac-
ters of the final class file name if it is too large. You can choose From
Front, From Middle, or From End.

Delete class files from output directory before linking simply re-
moves all class files in the target directory before linking your code.
This is useful if you recompile your source often as it makes sure no
old code exists in the target folder.
JAV–112 Targeting the Java VM

Target Sett ings for Java
Java Output
Figure 7.13 Output as class folder

Jar File

A Jar file is a Java Archive file. The Jar File option (Figure 7.14) al-
lows you to control how the Jar file is created. Choose Compress to
create a compressed Jar file. Choose Generate Manifest to have
manifest information added to the Jar file.

Figure 7.14 Output as Jar file (Mac OS)

The Type and Creator fields only appear in the Mac OS hosted ver-
sion of CodeWarrior. These fields allow you to change the default
application used to open them if you double-click on the file on the
Mac OS. The default settings open the Jar file in Class Wrangler.

See also “Class Wrangler for Mac OS” on page 119.
Targeting the Java VM JAV–113

Target Sett ings for Java
Java Output
Application

Choose Application from the Output Type popup menu to create a
Java application (Figure 7.15).

NOTE: This option is only available on the Windows and Solaris
hosted versions of CodeWarrior. For information on how to create
Mac OS standalone applications, see “Standalone Applets for
Mac OS” on page 137.

Figure 7.15 Application output type

Choose Compress to create a compressed Jar file. Choose Generate
Manifest to create manifest information in the file.

When the Console Application option is enabled, the DOS prompt
window will display when you launch the application. System.out,
System.err and System.in will use the console's io streams for stan-
dard input/output. In other words, the application is a CUI Win-
dows application. When this option is disabled, the console window
does not display because the application is built as a GUI Windows
application. The user will not be able to see standard I/O unless
they pipe it somewhere else.
JAV–114 Targeting the Java VM

Target Sett ings for Java
JavaDoc
JavaDoc
The JavaDoc panel (Figure 7.16) controls how JavaDoc creates docu-
mentation for your Java source.

Figure 7.16 JavaDoc panel

Ignore options

Three ignore options: Ignore @version comments, Ignore @depre-
cated comments, and Ignore @author comments tell JavaDoc to
omit comments with these “tags” from the final output when en-
abled.

Generate Mac-friendly filenames

Tells JavaDoc to generate filenames shortened to 31 characters to
create cross-platform friendly HTML documents. This option is not
available on the Mac OS version of CodeWarrior.
Targeting the Java VM JAV–115

Target Sett ings for Java
JavaDoc
Generate index

Generate index tells JavaDoc to create index information in the final
output. Sometimes, the index can be very large. Turn this option off
if you do not want index information generated for your project.

Generate hierarchy

Generate hierarchy tells JavaDoc to generate class hierarchy infor-
mation. Turn this option off if you do not want hierarchy informa-
tion created.

Output as folder hierarchy

Instead of only outputting the HTML files for a project to a flat
folder hierarchy with extremely long filenames, the JavaDoc Pre-
Linker has the option of putting the files into a package-based folder
hierarchy. The actual file names are only the class name.

HTML file creator code

Use this option to set the creator code for HTML files to your favor-
ite HTML browser. This option is only available on the Mac OS
hosted version of CodeWarrior.

Scope

The Scope pop-up menu controls which classes will be included in
the documentation. Choices include:

• public

• protected and public

• protected, public and package

• all

NOTE: If you do not specifically declare a class to be public, pri-
vate, or protected, it will automatically be declared as package.
JAV–116 Targeting the Java VM

Target Sett ings for Java
JavaDoc
Encoding options

The two encoding options: Source file encoding and Output encod-
ing are for internationalization of your JavaDoc files. For example,
the Java source files can be in Arabic and output in English.

Encoding numbers are used in each field. JavaDoc converts the
number in the source field to Unicode, and then from Unicode to
the value specified in the output field. Leave these fields blank to
use the default ISO Latin (9859-1) encoding.

For more information on encoding, see:

http://java.sun.com/products/jdk/1.1/intl/html/in-
tlspec.doc7.html

Add links to the Java API docs

This option adds links to the main Java API docs where appropriate
in your code. The default link is on the Web. If you have a dial-up
connection, you might prefer to have the API docs somewhere on
your local machine. This way, you can specify the URL to be some-
thing like file://my_drive/jdk_docs/ . You can also specify a
relative URL.

NOTE: If you move the docs around, the links may break.
Targeting the Java VM JAV–117

Target Sett ings for Java
JavaDoc
JAV–118 Targeting the Java VM

8
Class Wrangler for
Mac OS
Class Wrangler is Metrowerks’ utility program for working with
Java Archive (jar) files on the Mac OS. It allows you to add or re-
move files, as well as copy files from one zip/Jar file to another.
Class Wrangler has other useful features as well.

NOTE: Class Wrangler is not a general purpose utility for com-
pressed zip files. It will only handle zip archives that are all con-
tained in one file (no disk-spanning files). If the zip archive is com-
pressed, the deflate algorithm must be the one used in JDK 1.1
JAR files. Class Wrangler cannot handle encrypted files.

This chapter explains the Class Wrangler interface, and how you
can use it to get your work done. The sections in this chapter are:

• Class Wrangler Window—what you see in the Class Wran-
gler interface

• Working with Files and Archives—discusses how to work
with files and zip archives

• Editing Manifest Files—describes how to use the Edit Mani-
fest command

• Class Wrangler Preferences—shows you how to control the
way Class Wrangler works for you

• Comparing Archives—describes how to compare two Jar
files
Targeting the Java VM JAV–119

Class Wrangler for Mac OS
Class Wrangler Window
Class Wrangler Window
Class Wrangler uses a single window to display each package and
class file stored in a zip archive or Jar file, as shown in Figure 8.1.

Figure 8.1 The Class Wrangler Window

You can use the button bar to add, extract, delete, and get informa-
tion on files. Table 8.1 describes each button.

Button bar

File changed indicator

Package

Sub-package

Class File

Unsaved
Class File

Beanosity Indicator Column

Read/Write
Indicator

Number of items in file
JAV–120 Targeting the Java VM

Class Wrangler for Mac OS
Class Wrangler Window
Table 8.1 Class Wrangler button bar

The diamond icon at the top right is empty if the zip archive has not
changed since the last time it was saved, and contains a red check
mark if the file has been changed.

Each package lists all the files and sub-packages it contains. To
show or hide the contents of a package, click the disclosure triangle.

Button Description
 Add File to Jar file.

Extract Item and save item to disk.

Delete item from Jar file.

Get Info on class file. If a package or sub-package is
selected, will get info on every file in the package
and display the information separate windows, one
for each class.

Compression indicator. Clicking this button does
not compress the file, rather it marks the file for
compression (or uncompression) the next time the
file is saved. A compressed file will occupy less disk
space, but may require more time to load and pro-
cess.

Generate Manifest. This button indicates whether a
Jar file has a manifest file or if one will be generated
the next time the file is saved.

You can toggle the bean status of an item in the Jar
file by clicking in the JavaBean column. If the Jar file
has a manifest, and a particular item is a bean, Class
Wrangler draws a dot in the JavaBean column. Save
the file to retain the changed state.
Targeting the Java VM JAV–121

Class Wrangler for Mac OS
Working with Files and Archives
To the right of each file is its size in bytes. If a file is in italics, it has
recently been added to the archive and has not been saved to disk
yet. To save it, choose File > Save.

You can choose Edit > Copy to copy the names of the selected files
and packages to the Clipboard. When you copy a file, its fully quali-
fied name is placed in the Clipboard. For example, if you copy Au-
dioClip.class , this text is placed in the Clipboard:

java.applet.AudioClip

If you hold down the Option key while copying a class, an import
statement for the selected class is placed in the clipboard:

import java.applet.AudioClip;

If you copy a package, its name, the names of its subpackages, and
the names of its class files are placed in the Clipboard. If you hold
down the Option key while copying, an import statement for the
subpackages, and the class files are placed in the Clipboard.

Typing a full or partial file or package name selects the closest
matching item in the Class Wrangler window. This is called “type
ahead selection” and allows you to move around the archive
quickly when you know the file or package you are looking for.

See also “Use full package name for type ahead” on page 132.

Working with Files and Archives
This section explores how you can get work done using Class Wran-
gler. To avoid confusion, these topics refer to class files, zip archives,
and Jar files (Java Archive files) consistently. Keep in mind that each
is really just a kind of file.

Zip archives and Jar files are used interchangeably. The main differ-
ence is a Jar file can have manifest files, whereas Zip archives do
not.

The topics in this section are:

• Opening a Zip Archive
JAV–122 Targeting the Java VM

Class Wrangler for Mac OS
Working with Files and Archives
• Creating a Zip Archive

• Adding Files

• Using the Add Files Dialog

• Add Directory

• Extracting Files

• Deleting Files

• Getting Information on Files

• Moving Files Between Archives

Opening a Zip Archive

There are two ways to open a zip archive:

• Drag and drop a zip archive onto the Class Wrangler icon.

• Choose File > Open and choose the zip archive.

Class Wrangler opens the file and displays its contents in a window.

At the bottom of the Open dialog, there are three check boxes that
let you choose which files the dialog displays. When no option is
checked, the dialog displays only files whose Macintosh file types
are for zip or class files. When the Filter using file extension option
is on, the dialog also shows any file whose name ends in .zip or
.class . When the Filter using file contents option is on, Class
Wrangler examines the internal contents of each file and displays
any file that it determines to be a zip or class file. This option is the
most accurate, but takes the most amount of time. When the Show
all files option is checked, Class Wrangler displays all files in a di-
rectory. This option overrides the other two, even if the other two
are checked.

You can set these options generally for the program as well. See
“File Filtering Settings” on page 132.

Creating a Zip Archive

There are three ways to create a zip archive with Class Wrangler. To
create an empty zip archive, choose File > New. To create a zip ar-
Targeting the Java VM JAV–123

Class Wrangler for Mac OS
Working with Files and Archives
chive that contains one class file, choose File > Open, and select the
class file. Class Wrangler displays a new window that contains that
file.

To create a zip archive for several class files, follow these steps:

1. Make sure that Class Wrangler is not running or that there
are no open windows in Class Wrangler.

2. Drag and drop the class files onto the Class Wrangler icon.

Class Wrangler creates a window that contains those class files.

NOTE: If you drag class files onto the Class Wrangler icon while
there is an open archive, the class files are added to the archive
displayed in the frontmost Class Wrangler window.

Adding Files

Class Wrangler gives you three ways to add files to an archive.

• Choose Package > Add Files or click the Add Files button in
the Class Wrangler window. Class Wrangler displays a dia-
log box that lets you choose a group of files to add at once.
For more information, see “Using the Add Files Dialog” on
page 125.

• Drag and drop class files onto the Class Wrangler icon. Class
Wrangler adds them to the frontmost window.

• Drag and drop class files onto a Class Wrangler window.
Class Wrangler adds them to the window.

If you try to add a class file that is already in the zip archive, Class
Wrangler displays an alert asking you whether you want to over-
write the existing file.

After you add class files, their names appear in italics in the window
to show the new files have not been saved to the zip archive on disk.
To save the new files to disk, choose File > Save.
JAV–124 Targeting the Java VM

Class Wrangler for Mac OS
Working with Files and Archives
Using the Add Files Dialog

If you use the Add Files command or button, Class Wrangler dis-
plays a dialog like the one shown in Figure 8.2.

The top list is part of a standard file dialog and displays the contents
of a folder. The bottom list contains all the files that will be added to
the zip archive when you click the Done button. To choose a file to
add, select it in the top list and click Add. To add all the files in the
top list, click Add All. To remove a file from the bottom list, select it
and click Remove. To remove all the files from the bottom list, click
Remove All.
Targeting the Java VM JAV–125

Class Wrangler for Mac OS
Working with Files and Archives
Figure 8.2 The Add Files dialog

The three check boxes at the bottom of the dialog let you choose
which files the dialog displays. When no option is checked, the dia-
log displays only files whose Macintosh file types are for zip or class
files. When the Filter using file extension option is on, the dialog
also shows any file whose name ends in .zip , .jar , or .class .
When the Filter using file contents option is on, Class Wrangler ex-
amines the internal contents of each file and displays any file that it
determines to be a zip or class file. This option is the most accurate,
but takes the most amount of time. When the Show all files option
is checked, Class Wrangler displays all files in a directory. This op-
tion overrides the other two, even if the other two are checked.
JAV–126 Targeting the Java VM

Class Wrangler for Mac OS
Working with Files and Archives
You can set these options generally for the program as well. See
“File Filtering Settings” on page 132.

Add Directory

The Package > Add Directory command allows you to add a pack-
age to the frontmost archive as shown in Figure 8.3. You must type
the full path name. The directory is created in the archive.

Figure 8.3 Add Directory dialog

Extracting Files

Class Wrangler gives you two ways to extract class files from a zip
archive. The class files remain in the zip archive after they are ex-
tracted. The process of extraction does not remove the class file from
the zip archive.

• Select the files and choose Package > Extract Files or click the
Extract Files button in the Class Wrangler window. Class
Wrangler displays a file dialog asking you where to place the
files. Select a location and click OK. Class Wrangler places
the class files in that location.

• Drag the files from the Class Wrangler window onto the
Finder desktop. Class Wrangler places the files in that loca-
tion.

TIP: If you do not want the folder hierarchy, hold down the Op-
tion key while dragging.
Targeting the Java VM JAV–127

Class Wrangler for Mac OS
Working with Files and Archives
When Class Wrangler extracts a file, it places the file in a folder hier-
archy that matches the file’s package hierarchy. For example, if the
file is in the hierarchy java.util , Class Wrangler creates the folder
java at the location you selected, creates the folder util inside
java , and places the file in util .

Deleting Files

To delete a class file from a zip archive, select the file and do one of
the following:

• Choose Package > Delete File

• Click the Delete File button in the Class Wrangler window

• Press Option-Delete

Class Wrangler indicates the file is flagged for deletion by display-
ing the file name in italics. You must choose File > Save to com-
pletely remove the files.

Getting Information on Files

You can see information on any class file in a zip archive. Just select
the class file and choose Package > Get Info or click the Information
button in the Class Wrangler window. Class Wrangler displays a
window of information on the public class in the class file, including
information on its fields, methods, interfaces, and superclass, as
shown Figure 8.4.

Information windows are associated with an open archive docu-
ment. If the associated archive document is closed, all of its informa-
tion windows are closed.
JAV–128 Targeting the Java VM

Class Wrangler for Mac OS
Working with Files and Archives
Figure 8.4 The Class Wrangler Get Information window

Click the sub-pane zoom box control to expand the pane to fill the
entire information window, or shrink the pane to see all sub-panes.

Moving Files Between Archives

You can move a file from one archive to another. Open both ar-
chives in Class Wrangler, and drag the files from one window to an-
other. Class Wrangler copies the files from the source archive into

Sub-pane
Zoom box
Targeting the Java VM JAV–129

Class Wrangler for Mac OS
Editing Manifest Files
the destination archive. The files are not removed from the source
archive.

Editing Manifest Files
Class Wrangler also allows you to edit some manifest data for the
currently selected item in the active archive. Choose Package > Edit
Manifest to edit the manifest data for the currently selected item.

Figure 8.5 Edit Manifest dialog

Manifest data is displayed for the item (Figure 8.5) for you to verify.
This data reflects the state of the item in memory, not on disk. So the
JavaBean item will display the state of that item as it would cur-
rently be saved to disk, not as it was originally.

Certain items, such as the name, SHA, and MD5 hash codes, cannot
be modified. The Depends list is a list of items. Any text can be
dragged to this pane in order to add it to the list. The Other list
holds all manifest tags that are not yet specifically parsed by Class
Wrangler. These could include new tags from Sun or special user-
defined tags.
JAV–130 Targeting the Java VM

Class Wrangler for Mac OS
Class Wrangler Preferences
See also Sun’s documentation for the complete explanation of
manifest tags and the manifest file format.

Class Wrangler Preferences
This section discusses how to control the way Class Wrangler works
for you. As with most programs, Class Wrangler has preferences
you can set to control its operation. When you choose
Edit > Preferences, Class Wrangler displays a Preferences dialog
box as shown in Figure 8.6.

Figure 8.6 The Class Wrangler Preferences dialog

Click the Factory button to restore the settings to program defaults.

The effect of these options is described in the following topics:

• Functionality Settings

• File Filtering Settings

• Display Settings
Targeting the Java VM JAV–131

Class Wrangler for Mac OS
Class Wrangler Preferences
• Miscellaneous Settings

Functionality Settings

The first group of preference settings control how you interact with
Class Wrangler.

Filename truncation

The Filename truncation pop-up menu operates similar to the same
menu in the Java Target panel in the CodeWarrior IDE. On the Mac
OS, file names cannot be greater than 31 characters long. If you ex-
tract a class file that is greater than 31 characters, Class Wrangler
uses this setting to determine where the extra characters will be
eliminated from. Options are: Front, Middle, and End.

If you choose End, Class Wrangler preserves any file name exten-
sion in the final file name.

Type ahead selection delay (ticks)

The amount of time, in ticks, Class Wrangler will wait before select-
ing the file represented by typing on the keyboard.

Use full package name for type ahead

Enable this option to force type ahead selection based on the full
package name of the class. For example:

java/awt/Adjustable.class

File Filtering Settings

When you add or open a file using the standard file dialog box,
Class Wrangler displays only zip, Jar, and class files in the file list.
You control how Class Wrangler identifies the proper files with this
group of options in the Preferences dialog.

If you use files created on Mac OS computers, turn off all options.
When these options are off, Class Wrangler looks at a file’s Mac OS
file type to determine whether a file is a zip archive, Jar file, or a
JAV–132 Targeting the Java VM

Class Wrangler for Mac OS
Class Wrangler Preferences
class file. Class Wrangler assumes that class files have a file type of
'Clss' or 'COåk' . Zip archives have a file type of 'ZIP ' or
'ZipF' . Jar files have a file type of 'ZIP ' .

If you use files created on other operating systems (such as Win-
dows or UNIX), you will need to turn on one of the options. When
you transfer such a file to a Mac OS computer, the file does not have
the proper Mac OS file type. Class Wrangler needs some other
mechanism it can use to identify that the file is appropriate.

NOTE: These options do not affect drag and drop operations. To
successfully drop a file, it must have the proper Mac OS file type.

Use File Extension when opening files

Will only show files with a .zip , .jar , or .class extension.

TIP: Use Internet Config to map common Java extensions, such
as .zip and .jar to the appropriate Mac OS file types. See “Use In-
ternet Config for File Mappings” on page 161 for more information.

Use file contents when opening files

Will only show files based on their contents. This option is useful if
a zip or Jar file does not have the appropriate extension.

Show All Files

Displays all files in the list regardless of file extension or content.
This option overrides the other options, even if they are set.

TIP: Each of these options are also available to you in the Open
dialog box.
Targeting the Java VM JAV–133

Class Wrangler for Mac OS
Class Wrangler Preferences
Display Settings

The display settings control how Class Wrangler displays a zip/Jar
file.

Show full pathname

If the Show full pathname option is on in the Preferences dialog
box, Class Wrangler shows the fully qualified name for every entry
in its window, as shown Figure 8.7.

Figure 8.7 The Class Wrangler window with full pathnames

If this option is off, only the name of that entry’s package or class
file is shown.
JAV–134 Targeting the Java VM

Class Wrangler for Mac OS
Comparing Archives
Open items collapsed

If the Open items collapsed option is on in the Preferences dialog
box, the program will always open archives with all hierarchical en-
tries collapsed. Click the disclosure triangle to display the contents
of a package.

Miscellaneous Settings

The last two settings tell Class Wrangler what to do at startup and
when opening files.

Prompt for file at startup

If the Prompt for file at startup option is on, Class Wrangler will ask
you to specify a file to open when you launch the program.

Verify manifest when opening files

Verifies the manifest information, if present, of a Jar file as Class
Wrangler opens the file. Jar files will take longer to open with this
option enabled. If a particular entry that has a manifest entry does
not verify, Class Wrangler draws it in red.

Comparing Archives
Class Wrangler allows you to compare two Jar files to determine
their differences. You can compare archives on two levels. At the
first level, comparison is based on the names and positions of items
in the Jar file. The second level compares the Jar files by differences
in the contents of each item.

To compare two Jar files, choose File > Compare Files. The Com-
pare Archives dialog, shown in Figure 8.8, is straight forward to
use.
Targeting the Java VM JAV–135

Class Wrangler for Mac OS
Comparing Archives
Figure 8.8 Compare archives dialog

Click the Choose button to pick the files you wish to compare. If
you want to compare the files based on differences in the content of
each item, click the Compare Using Contents checkbox. Click Com-
pare to start the process.

NOTE: Comparing files requires a lot of RAM. This is especially
true if you are comparing large Jar files. It may be necessary to in-
crease the memory partition of Class Wrangler in some cases.

Once the compare process is completed, each archive is displayed in
a separate window. Items that are unique to an archive are drawn in
green. Items that are in both archives, but are different, are drawn in
blue.

TIP: You will only see items drawn in blue with the Compare
Using Contents option enabled.
JAV–136 Targeting the Java VM

A
Standalone Applets
for Mac OS
You can use CodeWarrior to create standalone Mac OS Java applica-
tions. This release of CodeWarrior uses a method for creating stan-
dalone Java applications which makes use of JBindery. This chapter
will walk you through creating standalone applications.

Using JBindery, CodeWarrior “binds” the neccessary code to your
Java code to make standalone applications.

Topics discussed in this section are:

• About the JBindery Application

• Creating a Standalone Application

About the JBindery Application
JBindery is an application that binds the VM interface to Java code
to create standalone Java applications. It is supplied with the
Mac OS Runtime for Java (MRJ) software development kit from
Apple Computer Inc. MRJ can be found on the CodeWarrior CD in
the Cool Demos, SDKs, & Tools folder. For more information on
JBindery and other parts of the MRJ SDK, see the documentation
provided with MRJ.

Creating a Standalone Application
Following is a step-by-step guide to creating a standalone Mac OS
Java application using JBindery.
Targeting the Java VM JAV–137

Standalone Applets for Mac OS
Creating a Standalone Application
1. Create a new Java project.

Choose File > New Project. Select Java Application from the
Java section and click OK. CodeWarrior will ask you to name and
save the new project to your hard disk via a standard save file dia-
log box.

2. Add your Java files.

Choose Project > Add Files to add your Java source files to the
project. Make sure you add your files to the correct build target if
you have more than one build target in your project.

3. Open the Target Settings dialog box.

Choose Edit > Java Application Settings… to open the Target Set-
tings dialog box.

NOTE: The wording of this menu item changes to reflect the
name of the build target being displayed in the project window. If
you changed the name of your build target, then look for that name
in this menu.

4. Activate the Java Mac OS Post Linker.

Click Target Settings in the panel list on the left-hand side of the di-
alog box. The Target Settings panel appears. Choose Java Mac OS
Post Linker from the Post-Linker pop-up menu This activates the
Java Mac OS Post Linker and tells CodeWarrior to use the settings
in the Java Mac OS Settings panel when building your project

5. Change the main class setting.

Click Java Target in the panel list on the left-hand side of the dialog
box. The Java Application Settings dialog box appears. Click on
Target Settings in the panel list to the left of the dialog box to dis-
play the Target Settings panel. Change the Main Class field to the
same name as your application’s main class.
JAV–138 Targeting the Java VM

Standalone Applets for Mac OS
Creating a Standalone Application
6. Set the Output Type.

Select Java Mac OS Settings from the panel list on the left-hand side
of the dialog box. This displays the Java Mac OS Settings panel.

Choose JBindery from the Mac OS Java Output Type pop-up
menu.

7. Redirect stdin and stdout.

If you want stdin and stdout to be redirected or ignored, choose
the appropriate menu items in the two Redirect pop-up menus.

8. Set the Creator and Output Filename.

Change the Creator and Output Filename fields to the creator and
filename you want your application to have.

9. Set the Minimum and Maximum heap sizes.

Set the Minimum app heap to the minimum number of bytes your
application will be allowed to run in. Set the Maximum app heap
to the prefered number of bytes for your applications heap.

10. Save your settings.

Click the Save button at the bottom of the dialog box to save all of
your settings. Then close the dialog box.

11. Compile and run.

Choose Project > Make to create your application. Once it has been
successfully built, double-click it’s icon to run it.
Targeting the Java VM JAV–139

Standalone Applets for Mac OS
Creating a Standalone Application
JAV–140 Targeting the Java VM

B
Troubleshooting
This section is designed to give you a quick reference point for com-
mon problems with their solutions when targeting the Java VM
with CodeWarrior. This should be the first place you look before
contacting technical support.

Troubleshooting questions and answers cover the following main
categories:

• Programming Problems

• Conversion Problems

Programming Problems
This section deals with problems encountered writing Java code
using the CodeWarrior development environment.

Cannot Find Main Class in Java Application

Problem

The following errors are encountered when building Java applica-
tions (depending on which host CodeWarrior is running on, and
which VM is being used):

• Could not execute class name : The system can-
not find the file specified.

• Can't find class class name

• NoClassDefFound

Solution

The common cause of this error is the incorrect entry of the Main
Class name in the Java Target panel. Open this panel by choosing
Edit > Target Settings (where Target is the name of the build target
Targeting the Java VM JAV–141

Troubleshoot ing
Programming Problems
in question), then select Java Target from the settings panels list on
the left side of the window. Make sure that the Main Class field
matches the name of the main class in your code. Remember that
class names are case sensitive.

If this field does match your main class exactly, make sure that you
have a virtual machine installed on your computer. CodeWarrior
can use the Apple MRJ, Sun JDK 1.1.6 (or higher), and Microsoft In-
ternet Explorer 4.0 as a virtual machine. We include all of these on
the CodeWarrior CD(s). You can specify which one you want to use
via the Virtual Machine pop-up menu in the Java Target panel. You
can also download the latest versions from Apple, Sun or Microsoft.

Invalid Class Name in Applet Tag

Problem

This error may be worded in one of the following ways, depending
on which host CodeWarrior is running on, and which VM is being
used:

• File not found when looking for: class name

• java.lang.NullPointerException

• load: class class name not found

Solution

This is usually the result of the class name specified in the applet
HTML tag not matching the actual class name in the Java code.
Make sure that the class name in the applet tag matches the name
of the main class in your code. Also be sure that the name of the
class file matches the name of the main class. Remember that class
names are case sensitive.

Debugging Classes.zip

Problem

When stepping through Java code, you cannot step into the
classes.zip library by default.
JAV–142 Targeting the Java VM

Troubleshoot ing
Programming Problems
Solution

To debug classes.zip, requires that you switch to the debug version
of the library. Locate the supplied Classes_debug.zip library. It
can be found in the following location:

Windows Metrowerks CodeWarrior\Java Support\Librar-
ies\Classes_debug.zip

Mac OS Metrowerks CodeWarrior:Java Support:Librar-
ies:Classes_debug.zip

Drag this file into the same group as classes.zip in the project win-
dow. And remove the classes.zip file from your project. Now you
can debug any class in classes.zip.

Additional Problems

If you find you are having problems in this area, please send a bug
report to Metrowerks support, support@metrowerks.com , and
that information will be added to this manual in the next release.
Targeting the Java VM JAV–143

Troubleshoot ing
Conversion Problems
Conversion Problems
This section deals mainly with problems encountered converting
older CodeWarrior Java projects to the latest release.

Cannot Convert Older Droplet Projects

Problem

The Droplet project type was used in previous versions of
CodeWarrior to make a “pseudo” stand alone applet. Droplet is no
longer supported by CodeWarrior.

Solution

While the Droplet type is no longer supported, you can still make a
Stand Alone Java application with CodeWarrior. The CodeWarrior
project converter does not convert your project to the new type for
you. The best method is to use the StandAlone Applet stationery
and create a new project. Then add your Java source files to this
project.

See “Standalone Applets for Mac OS” on page 137 for more infor-
mation.
JAV–144 Targeting the Java VM

Index
A
Add Directory command

Class Wrangler 127
Add File button

Class Wrangler 121
Add Files command

Class Wrangler 125
Add links to the Java API docs

JavaDoc Project panel 117
All exceptions command 73
Applet project type

Java Target panel 95
Applet Viewer setting

Java Target panel 95
AppletFrame.java 61
applets

choosing viewer 74
debugging 73–76
defined 59

Application project type
Java Target panel 98

applications
creating 114
debugging 73–76
defined 60

Assembler view
in MWDebug 75

B
BCI See bytecode interpreter
Binary Transfer

FTP Post-Linker panel 107
build target

defined 32
bytecode

compared to object code 20
defined 19

bytecode interpreter defined 21

C
class files

debugging 72–76
Class Folder option

Java Output panel 112

Name field 112
class folders

defined 68
filename truncation 112
specifying as output type 65

Class for Debugging
Java Settings panel 82

Class Wranger
Factory button 131
Filename truncation preference 132

Class Wrangler 119–136
Add Directory command 127
Add File button 121
Add Files command 125
Compare Files command 135
Compare Using Contents option 136
Comparing Archives 135–136
Compressed button 121
Delete button 121
Edit Manifest command 119, 130
Extract Item button 121
Generate Manifest button 121
Get Info button 121
JavaBean column 121
Open items collapsed preference 135
Preferences 131–135
Prompt for file at startup preference 135
Show full pathname preference 134
Type ahead selection delay preference 132
Use full package name for type ahead 132
Verify manifest when opening files

preference 135
classes.zip file 68
CodeWarrior

documentation folder 14
integrated development environment (IDE) 22
release notes 7
tutorials 14
year 2000 compliance 15

Compare Files command
Class Wrangler 135

Compare Using Contents
Class Wrangler 136

Comparing Archives
Class Wrangler 135–136

Compress
Targeting the Java VM JAV–145

Index
Java Output panel 113, 114
Compressed button

Class Wrangler 121
Console Application

Java Output panel 114
conventions 8

figures 9
host terminology 9
keyboard shortcuts 10

Creator field
Java Output panel 113

D
Debug all class files in directory hierarchy 73
Debug all class files in directory hierarchy

(Debugger) 77
Debugger User Guide 46
debugging 67, 71–76
Delete button

Class Wrangler 121
development tools

CodeWarrior IDE 22
disassembling

class files 75
Discover Programming 15
documentation

CodeWarrior Documentation folder 14
Debugger User Guide 46
Discover Programming 15
IDE User Guide 14, 22, 23, 33, 34, 39, 71
Java API Documentation 14
Java Language Tutorial 14
Learn Java on the Macintosh 14

E
Edit Manifest command

Class Wrangler 119, 130
encoding options

JavaDoc Project panel 117
Exceptions in targeted classes command 73
exceptions, breaking on 73
Extract Item button

Class Wrangler 121

F
Factory button

Class Wranger 131
figure conventions 9
File Type field

Java Output panel 113
Filename truncation

Class Wrangler 132
Filename Truncation menu

Java Output panel 112
Filter using file contents

in Add Files dialog box 126
in Open dialog boxes 123

Filter using file extension
in Add Files dialog box 126
in Open dialog boxes 123

Folder to Upload
FTP Post-Linker panel 107

FTP Post-Linker panel 106–107
Binary Transfer 107
Folder to Upload 107
Generate Log 107
Host Address 107
Password 107
Remote Directory 107
User Name 107

G
Generate Coments in Headers

Java Language panel 104
Generate Headers for All Methods

Java Language panel 104, 105
Generate hierarchy

JavaDoc Project panel 116
Generate index

JavaDoc Project panel 116
Generate Log

FTP Post-Linker panel 107
Generate Mac-friendly filenames

JavaDoc Project panel 115
Generate Manifest

Java Output panel 113, 114
Generate Manifest button

Class Wrangler 121
Get Info button
JAV–146 Targeting the Java VM

Index
Class Wrangler 121

H
Host Address

FTP Post-Linker panel 107
host terminology conventions 9
HTML file creator code

JavaDoc Project panel 116

I
IDE. See CodeWarrior, integrated development en-

vironment
IDE User Guide 14, 22, 23, 33, 34, 39, 71
Ignore @author comments

JavaDoc Project panel 115
Ignore @deprecated comments

JavaDoc Project panel 115
Ignore @version comments

JavaDoc Project panel 115
installing Java 18

J
Jar file

and manifest information 121, 135
as Library 60
defined 68, 113
specifying as output type 65

Jar File option
Java Output panel 113

Jar files
compressed 113

Jar files (Java Archive files) 122
Java

applet 59
Application 60
bytecode 19
development process 19
installing 18
Library 60
naming conventions 38
overview 19
projects See projects
system requirements 17
tutorial See tutorial
virtual machine 19

Java API Documentation 14
Java Language panel

Generate Comments in Headers 104
Generate Headers for All Methods 104, 105

Java Language Tutorial 14
Java Mac OS Post Linker Settings 108–112
Java Output panel 112–114

compress 113, 114
Console Application 114
Creator field 113
Delete class files from output directory before

linking 112
File Type field 113
Filename Truncation menu 112
Generate Manifest 113, 114
Output Type

Application 114
Class folder112
Jar File113

Java platform 22
Java Settings panel 82

Class for Debugging 82
JView Arguments 82
Program Arguments 82

Java Target panel 95–100
Applet project type 95
Applet Viewer setting 95
Application project type 98
Library project type 100
Main Class field 98
Parameters field 99
Target Type pop-up menu 95
Virtual Machine setting 96
VM Arguments setting 98
Working Directory setting 100

JavaBean 121
JavaBean column

Class Wrangler 121
JavaDoc 24, 85–90
JavaDoc Project panel 115–117

Add links to the Java API docs 117
Encoding Options 117
Generate hierarchy 116
Generate Mac-friendly filenames 115
HTML file creator code 116
Ignore @author comments 115
Targeting the Java VM JAV–147

Index
Ignore @deprecated comments 115
Ignore @version comments 115
Output as folder hierarchy 116
Output encoding 117
Scope popup menu 116
Source file encoding 117

JavaDocProject panel
Generate index 116

JBindery 108, 137
Creating a Standalone Application 137

JView Arguments
Java Settings panel 82

K
keyboard conventions 10

Solaris 11

L
Learn Java on the Macintosh 14
Library

defined 60
Library project type

Java Target panel 100
linker option 93

M
Mac OS platform 22
Mac OS Zip 111
Main Class field

Java Target panel 98
manual style 8
Mixed view

in MWDebug 75
Multi-language debugging 72
MWDebug

Assembler view 75
Mixed view 75

N
Name field

Class folder option 112
No exceptions command 73

O
object code

compared to bytecode 20
Open items collapsed

Class Wrangler 135
Output as folder hierarchy

JavaDoc Project panel 116
output directory option 94
Output encoding

JavaDoc Project panel 117

P
Parameters field

Java Target panel 99
Password

FTP Post-Linker panel 107
platforms

Java 22
Mac OS 22
Win32 22

Post-linker option 94
PowerPC processor 22
Pre-linker option 94
processors

PowerPC 22
68K 22
x86 22

Program Arguments
Java Settings panel 82

Project Stationery
described 60

project types 59
projects

creating 62
Prompt for file at startup

Class Wrangler 135

R
release notes 7
Remote Directory

FTP Post-Linker panel 107

S
Scope popup menu
JAV–148 Targeting the Java VM

Index
JavaDoc Project panel 116
shortcut conventions 10

Solaris 11
Show all files

in Add Files dialog box 126
in Open dialog boxes 123

Show full pathname
Class Wrangler 134

Show Processes command (MWDebug) 74
68K processor 22
Solaris

keyboard conventions 11
Source file encoding

JavaDoc Project panel 117

T
target name option 93
target See build target
Target Settings panel 92–94
Troubleshooting 141–144
tutorial

adding files 37
bounce effect 26
build targets 32
changing output name 35
changing output type 34
changing target name 34
compiling 41
creating a new project 29
debugging 45
editing 39
enabling the debugger 46
errors & warnings window 42
excercise 53

number of slides parameter53
size and orientation parameter54
slide sequence parameter56
sound slide parameter55
using the new parameters57

fixing syntax errors 43
Java applet description 26
removing files 37
running the applet 45
setting breakpoints 46
solution location 28

sound 26
starting a debug session 48
stepping the debugger 50
stopping the debugger 51
theory of operation 26

illustration 27
turning debugging on for a file 46
using the function pop-up menu 46

type ahead selection 122
Type ahead selection delay

Class Wrangler 132
typographical conventions 8

U
Unicode 117
Use full package name for type ahead

Class Wrangler 132
User Name

FTP Post-Linker panel 107

V
Verify manifest when opening files

Class Wrangler 135
virtual machine

adding (Solaris) 97
and platform-independent code 19
defined 19

Virtual Machine setting
Java Target panel 96

VM Arguments
Java Target panel 98

W
Win32 platform 22
Working Directory setting

Java Target panel 100
Wrangler, Class 119–136

X
x86 processor 22

Y
year 2000 compliance 15
Targeting the Java VM JAV–149

Index
Z
zip files 60
JAV–150 Targeting the Java VM

CodeWarrior

Targeting the Java VM

Credits

writing lead: David Blache

other writers: L. Frank Turovich, Marc Paquette, Chris
Magnuson, Derek Saldana, Jim Trudeau

engineering: Greg Bolsinga, Kevin Buettner, John Cor-
tell, Bernie Estavillo, Michael Farrar, Tim
Freehill, Michael Stricklin

frontline warriors: Greg Bolsinga, Bar

Guide to CodeWarrior Documentation
CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C/C++ front-end compiler

Pascal Compilers Reference Information on the Pascal front-end compiler

Error Reference Comprehensive list of compiler/linker error messages, with many fixes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler syntax

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks ANSI standard C library

MSL C++ Reference Function reference for the Metrowerks ANSI standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference Microsoft’s Reference for the Win32 API

The PowerPlant Book Introductory guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting Java How to use CodeWarrior to program for Java

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting NEC V810/830 How to use CodeWarrior to program for NEC V810/830 processors

Targeting Net Yaroze How to use CodeWarrior to program for Net Yaroze game console

Targeting Nucleus How to use CodeWarrior to program for the Nucleus RTOS

Targeting OS-9 How to use CodeWarrior to program for the OS-9 RTOS

Targeting Palm OS How to use CodeWarrior to program for PalmPilot

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting VxWorks How to use CodeWarrior to program for the VxWorks RTOS

Targeting Win32 How to use CodeWarrior to program for Windows

	Introduction
	Read the Release Notes
	About This Manual
	Typographical Conventions
	Host Conventions
	Figure Conventions
	Keyboard Conventions

	New Features in This Release
	Windows
	Mac�OS
	Solaris

	What is in This Book
	Where to Go from Here
	CodeWarrior Year 2000 Compliance

	Getting Started
	System Requirements
	Windows Requirements
	Mac�OS Requirements
	Solaris Requirements

	Installing CodeWarrior for Java
	Overview of Java in CodeWarrior
	Development Tools for Java
	CodeWarrior IDE
	CodeWarrior RAD Tools
	Java Linker
	CodeWarrior Debugger
	Java API Headers
	JavaDoc

	Programming Tutorial for Java
	Applet Description
	Before You Begin
	Creating the Project
	Creating a New Project
	Changing Target Settings

	Writing the Applet
	Adding the Java File
	Editing the HTML File

	Compile and Run
	Compile
	Fix the Error
	Examine the Output
	Run the Applet

	Debugging the Applet
	Using the CodeWarrior Debugger
	The Solution

	Exercise

	Creating Java Projects
	Types of Java Projects
	Applets
	Applications
	Libraries

	Using Project Stationery
	Working with Java in CodeWarrior
	Creating a New Java Project
	Creating Java Code
	Changing Settings
	Running a Java Project
	Debugging a Java Project
	Kinds of Application Projects

	Using the classes.zip Library

	Debugging Java Projects
	Debugger Features and Limitations
	Special Debugger Features for Java
	Breaking on Java Exceptions
	Opening Multiple Class Files in One Browser
	Choosing a Java Applet Viewer for Debugging
	Debugging Threads
	Viewing the Java VM Disassembly
	Specifying Java Debugger Settings
	Debugging External Java Sessions (Windows Only)
	Java Settings Panel (Windows Only)

	JavaDoc
	CodeWarrior JavaDoc Implementation
	Using JavaDoc

	Target Settings for Java
	Target Settings
	Java Target
	Applet
	Application
	Library

	Java Command Line
	Java Language
	FTP Post Linker
	Java Mac�OS Post Linker
	JBindery
	Mac�OS Zip

	Java Output
	Class Folder
	Jar File
	Application

	JavaDoc

	Class Wrangler for Mac�OS
	Class Wrangler Window
	Working with Files and Archives
	Opening a Zip Archive
	Creating a Zip Archive
	Adding Files
	Using the Add Files Dialog
	Add Directory
	Extracting Files
	Deleting Files
	Getting Information on Files
	Moving Files Between Archives

	Editing Manifest Files
	Class Wrangler Preferences
	Functionality Settings
	File Filtering Settings
	Display Settings
	Miscellaneous Settings

	Comparing Archives

	Standalone Applets for Mac�OS
	About the JBindery Application
	Creating a Standalone Application

	Troubleshooting
	Programming Problems
	Cannot Find Main Class in Java Application
	Invalid Class Name in Applet Tag
	Debugging Classes.zip
	Additional Problems

	Conversion Problems
	Cannot Convert Older Droplet Projects

	Index

